コード例 #1
0
    for i in range(N - 1):
        (n1, n2, n3) = M[i].shape

        def opt_fun(x):  # Function to be called by Davidson algorithm
            x_reshape = np.reshape(x, M[i].shape)
            in_sum1 = lib.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
            in_sum2 = lib.einsum('njol,ijlm->noim', W[i], in_sum1)
            fin_sum = lib.einsum('pnm,noim->opi', F[i], in_sum2)
            return -np.reshape(fin_sum, -1)

        def precond(dx, e, x0):
            return dx

        init_guess = np.reshape(M[i], -1)
        u, v = lib.eig(opt_fun,
                       init_guess,
                       precond,
                       nroots=min(target_state + 1, n1 * n2 * n3 - 1))
        # State Averaging
        for j in range(len(v)):
            M_tmp = np.reshape(v[j], (n1, n2, n3))
            M_reshape_tmp = np.reshape(M_tmp, (n1 * n2, n3))
            (U, s, V) = np.linalg.svd(M_reshape_tmp, full_matrices=False)
            #print(np.diag(np.einsum('ij,jk->ik',np.einsum('i,ij->ij',s,V),np.conj(np.einsum('i,ij->ij',s,V).T))))
            #print(s**2)
            if j is 0:
                s_avg = s**2
                #rho_avg = np.einsum('i,ij->ij',s,V)
            else:
                s_avg += s**2
                #rho_avg += np.einsum('i,ij->ij',s,V)
        s_avg = np.sqrt(s_avg)
コード例 #2
0
ファイル: dmrg_dav.py プロジェクト: philliphelms/cyclomps
def main():
    t0 = time.time()

    ######## Inputs ##############################
    # SEP Model
    N = 50
    alpha = 0.35  # In at left
    beta = 2. / 3.  # Exit at right
    s = -1.  # Exponential weighting
    gamma = 0.  # Exit at left
    delta = 0.  # In at right
    p = 1.  # Jump right
    q = 0.  # Jump Left
    # Optimization
    tol = 1e-5
    maxIter = 0
    maxBondDim = 10
    useCTF = True
    ##############################################

    # Create MPS #################################
    # PH - Make Isometries, Center Site
    mpiprint('Generating MPS')
    M = []
    for i in range(int(N / 2)):
        tmp = np.random.rand(2,
                             min(2**(i),maxBondDim),
                             min(2**(i+1),maxBondDim))\
                             +0.j
        M.append(ctf.from_nparray(tmp))
    for i in range(int(N / 2))[::-1]:
        tmp = np.random.rand(2,
                             min(2**(i+1),maxBondDim),
                             min(2**i,maxBondDim))\
                             +0.j
        M.append(ctf.from_nparray(tmp))
    ##############################################

    # Create MPO #################################
    mpiprint('Generating MPO')
    # Simple Operators
    Sp = np.array([[0., 1.], [0., 0.]])
    Sm = np.array([[0., 0.], [1., 0.]])
    n = np.array([[0., 0.], [0., 1.]])
    v = np.array([[1., 0.], [0., 0.]])
    I = np.array([[1., 0.], [0., 1.]])
    z = np.array([[0., 0.], [0., 0.]])
    # List to hold MPOs
    W = []
    # First Site
    site_0 = ctf.astensor(
        [[alpha * (np.exp(-s) * Sm - v),
          np.exp(-s) * Sp, -n, I]])
    W.append(site_0)
    # Central Sites
    for i in range(N - 2):
        site_i = ctf.astensor([[I, z, z, z], [Sm, z, z, z], [v, z, z, z],
                               [z, np.exp(-s) * Sp, -n, I]])
        W.append(site_i)
    # Last Site
    site_N = ctf.astensor([[I], [Sm], [v], [beta * (np.exp(-s) * Sp - n)]])
    W.append(site_N)
    ##############################################

    # Canonicalize MPS ###########################
    for i in range(int(N) - 1, 0, -1):
        M_reshape = ctf.transpose(M[i], axes=[1, 0, 2])
        (n1, n2, n3) = M_reshape.shape
        M_reshape = M_reshape.reshape(n1, n2 * n3)
        (U, S, V) = ctf.svd(M_reshape)
        M_reshape = V.reshape(n1, n2, n3)
        M[i] = ctf.transpose(M_reshape, axes=[1, 0, 2])
        M[i - 1] = ctf.einsum('klj,ji,i->kli', M[i - 1], U, S)
    ##############################################

    # Canonicalize MPS ###########################
    def pick_eigs(w, v, nroots, x0):
        idx = np.argsort(np.real(w))
        w = w[idx]
        v = v[:, idx]
        return w, v, idx

    ##############################################

    # Create Environment #########################
    mpiprint('Generating Environment')
    # Allocate empty environment
    F = []
    tmp = np.array([[[1.]]]) + 0.j
    F.append(ctf.from_nparray(tmp))
    for i in range(int(N / 2)):
        tmp = np.zeros((min(2**(i + 1),
                            maxBondDim), 4, min(2**(i + 1), maxBondDim))) + 0.j
        F.append(ctf.from_nparray(tmp))
    for i in range(int(N / 2) - 1, 0, -1):
        tmp = np.zeros(
            (min(2**(i), maxBondDim), 4, min(2**i, maxBondDim))) + 0.j
        F.append(ctf.from_nparray(tmp))
    tmp = np.array([[[1.]]]) + 0.j
    F.append(ctf.from_nparray(tmp))
    # Calculate initial environment
    for i in range(int(N) - 1, 0, -1):
        tmp = ctf.einsum('eaf,cdf->eacd', M[i], F[i + 1])
        tmp = ctf.einsum('ydbe,eacd->ybac', W[i], tmp)
        F[i] = ctf.einsum('bxc,ybac->xya', ctf.conj(M[i]), tmp)
    ##############################################

    # Optimization Sweeps ########################
    converged = False
    iterCnt = 0
    E_prev = 0
    while not converged:
        # Right Sweep ----------------------------
        tr = time.time()
        mpiprint('Start Right Sweep {}'.format(iterCnt))
        for i in range(N - 1):
            (n1, n2, n3) = M[i].shape

            # Make Hx Function
            def Hfun(x):
                x_reshape = ctf.array(x)
                x_reshape = ctf.reshape(x_reshape, (n1, n2, n3))
                tmp = ctf.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
                tmp = ctf.einsum('njol,ijlm->noim', W[i], tmp)
                res = ctf.einsum('pnm,noim->opi', F[i], tmp)
                return -ctf.reshape(res, -1).to_nparray()

            def precond(dx, e, x0):
                return dx

            # Set up initial guess
            guess = ctf.reshape(M[i], -1).to_nparray()
            # Run eigenproblem
            u, v = eig(Hfun, guess, precond, pick=pick_eigs)
            E = -u
            v = ctf.array(v)
            M[i] = ctf.reshape(v, (n1, n2, n3))
            # Print Results
            mpiprint('\tEnergy at site {} = {}'.format(i, E))
            # Right Normalize
            M_reshape = ctf.reshape(M[i], (n1 * n2, n3))
            (U, S, V) = ctf.svd(M_reshape)
            M[i] = ctf.reshape(U, (n1, n2, n3))
            M[i + 1] = ctf.einsum('i,ij,kjl->kil', S, V, M[i + 1])
            # Update F
            tmp = ctf.einsum('jlp,ijk->lpik', F[i], ctf.conj(M[i]))
            tmp = ctf.einsum('lmin,lpik->mpnk', W[i], tmp)
            F[i + 1] = ctf.einsum('npq,mpnk->kmq', M[i], tmp)
        mpiprint('Complete Right Sweep {}, {} sec'.format(
            iterCnt,
            time.time() - tr))
        # Left Sweep ------------------------------
        tl = time.time()
        mpiprint('Start Left Sweep {}'.format(iterCnt))
        for i in range(N - 1, 0, -1):
            (n1, n2, n3) = M[i].shape

            # Make Hx Function
            def Hfun(x):
                x_reshape = ctf.array(x)
                x_reshape = ctf.reshape(x_reshape, (n1, n2, n3))
                tmp = ctf.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
                tmp = ctf.einsum('njol,ijlm->noim', W[i], tmp)
                res = ctf.einsum('pnm,noim->opi', F[i], tmp)
                return -ctf.reshape(res, -1).to_nparray()

            def precond(dx, e, x0):
                return dx

            # Set up initial guess
            guess = ctf.reshape(M[i], -1).to_nparray()
            # Run eigenproblem
            u, v = eig(Hfun, guess, precond, pick=pick_eigs)
            E = -u
            v = ctf.array(v)
            M[i] = ctf.reshape(v, (n1, n2, n3))
            # Print Results
            mpiprint('\tEnergy at site {}= {}'.format(i, E))
            # Right Normalize
            M_reshape = ctf.transpose(M[i], (1, 0, 2))
            M_reshape = ctf.reshape(M_reshape, (n2, n1 * n3))
            (U, S, V) = ctf.svd(M_reshape)
            M_reshape = ctf.reshape(V, (n2, n1, n3))
            M[i] = ctf.transpose(M_reshape, (1, 0, 2))
            M[i - 1] = ctf.einsum('klj,ji,i->kli', M[i - 1], U, S)
            # Update F
            tmp = ctf.einsum('eaf,cdf->eacd', M[i], F[i + 1])
            tmp = ctf.einsum('ydbe,eacd->ybac', W[i], tmp)
            F[i] = ctf.einsum('bxc,ybac->xya', ctf.conj(M[i]), tmp)
        mpiprint('Left Sweep {}, {} sec'.format(iterCnt, time.time() - tl))
        # Convergence Test -----------------------
        if np.abs(E - E_prev) < tol:
            mpiprint('#' * 75 + '\nConverged at E = {}'.format(E) + '\n' +
                     '#' * 75)
            converged = True
        elif iterCnt > maxIter:
            mpiprint('Convergence not acheived')
            converged = True
        else:
            iterCnt += 1
            E_prev = E
    mpiprint('Total Time = {}'.format(time.time() - t0))
コード例 #3
0
ファイル: n_site_model_rndstrt.py プロジェクト: zhcui/PyDMRG
        (n1, n2, n3) = Mr[i].shape

        def opt_fun(x):
            x_reshape = np.reshape(x, (n1, n2, n3))
            Hx = lib.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
            Hx = lib.einsum('njol,ijlm->noim', W[i], Hx)
            Hx = lib.einsum('pnm,noim->opi', F[i], Hx)
            return np.reshape(Hx, -1)

        def precond(dx, e, x0):
            return dx

        init_guess = np.reshape(Mr[i], -1)
        E, vl, vr = lib.eig(opt_fun,
                            init_guess,
                            precond,
                            pick=pick_eigs,
                            left=True)
        print('\tEnergy at site {}= {}'.format(i, E))
        Mr[i] = np.reshape(vr, (n1, n2, n3))
        Ml[i] = np.reshape(vl, (n1, n2, n3))
        # Correct Normalization
        norm_factor = np.einsum('j,ijk,k->', Fs[i - 1], Mr[i], Fs[i + 1])
        Mr[i] /= norm_factor
        Ml[i] /= np.einsum('ijk,ijk->', Mr[i], np.conj(Ml[i]))
        # Put into Canonical Form
        Mr_reshape = np.reshape(Mr[i], (n1 * n2, n3))
        Ml_reshape = np.reshape(Ml[i], (n1 * n2, n3))
        (ur, sr, vr) = np.linalg.svd(Mr_reshape, full_matrices=False)
        (ul, sl, vl) = np.linalg.svd(Ml_reshape, full_matrices=False)
        # Gauge Transform of Left State
コード例 #4
0
#!/usr/bin/env python

import numpy
from pyscf import lib

n = 100
a = numpy.random.rand(n, n)
a = a + a.T


def matvec(x):
    return a.dot(x)


precond = a.diagonal()
x_init = numpy.zeros(n)
x_init[0] = 1
#e, c = lib.eigh(matvec, x_init, precond, nroots=4, max_cycle=1000, verbose=5)
e, c = lib.eig(matvec, x_init, precond, nroots=4, max_cycle=1000, verbose=5)
print('Eigenvalues', e)
コード例 #5
0
    print('Right Sweep {}'.format(iterCnt))
    for i in range(N - 1):
        (n1, n2, n3) = M[i].shape

        def opt_fun(x):  # Function to be called by Davidson algorithm
            x_reshape = np.reshape(x, M[i].shape)
            in_sum1 = np.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
            in_sum2 = np.einsum('njol,ijlm->noim', W[i], in_sum1)
            fin_sum = np.einsum('pnm,noim->opi', F[i], in_sum2)
            return np.reshape(fin_sum, -1)

        def precond(dx, e, x0):  # A second dummy algorithm
            return dx

        init_guess = np.reshape(M[i], -1)
        u, v = lib.eig(opt_fun, init_guess, precond, nroots=9)
        # select max eigenvalue
        sort_inds = np.argsort(np.real(u))[::-1]
        E = u[sort_inds[target_state]]
        v = v[sort_inds[target_state]]
        print('\tEnergy at site {} = {}'.format(i, E))
        M[i] = np.reshape(v, (n1, n2, n3))
        # Right Normalize
        M_reshape = np.reshape(M[i], (n1 * n2, n3))
        (U, s, V) = np.linalg.svd(M_reshape, full_matrices=False)
        M[i] = np.reshape(U, (n1, n2, n3))
        M[i + 1] = np.einsum('i,ij,kjl->kil', s, V, M[i + 1])
        # Update F
        F[i + 1] = np.einsum('jlp,ijk,lmin,npq->kmq', F[i], np.conj(M[i]),
                             W[i], M[i])
# Left Sweep -----------------------------