コード例 #1
0
def test_inertia_of_model():
    """
    Explores delay of H and D relative to C and overshoot/undershoot with variable dwell time
    parameters.
    """

    # Time period for the run (again relative to Jan 1, 2020)
    t_list = np.linspace(
        0, 100, 100 + 1)  # Here starts from when FL started to ramp up cases

    # Need assumptions for R(t) and testing_rate(t) for the future as inputs
    rt = lambda t: 1.0 + 0.2 * math.sin(t / 12.0)
    model = NowcastingSEIRModel()
    delays = []

    t_i = 6
    t_h = 8

    for (t_i, t_h) in [(3, 8), (6, 8), (12, 8), (6, 4), (6, 16), (12, 16)]:
        model.t_i = t_i
        model.th0 = t_h

        # Create a ModelRun (with specific assumptions) based on a Model (potentially with some trained inputs)
        run = ModelRun(
            model,  # TODO experiment with dwell times
            20e6,  # N, population of jurisdiction
            t_list,
            None,  # tests,
            rt,
            case_median_age_f=lambda t: 48,
            initial_compartments={"nC": 1000.0},
            auto_initialize_other_compartments=
            True,  # By running to steady state at initial R(t=t0)
            auto_calibrate=
            False,  # Override some model constants to ensure continuity with initial compartments
        )

        # Execute the run, results are a DataFrame, fig is Matplotlib Figure, ratios are key metrics
        (results, ratios,
         fig) = run.execute_dataframe_ratios_fig(plot=MAKE_PLOTS)

        nC_peak_at = results["nC"].argmax()
        h_peak_at = results["H"].argmax()
        nD_peak_at = results["nD"].argmax()

        h_delay = h_peak_at - nC_peak_at
        d_delay = nD_peak_at - h_peak_at

        h_to_nC = results["H"][h_peak_at] / results["nC"][nC_peak_at]
        nD_to_h = results["nD"][nD_peak_at] / results["H"][h_peak_at]

        delays.append([t_i, model.t_h(48), h_delay, h_to_nC, d_delay, nD_to_h])
        assert h_delay - int(t_i + model.t_h(48) / 2) in [-2, -1, 0, 1, 2,
                                                          3]  # 0 +/- 1
        assert (d_delay) in [2, 1, 0]  # 1 +/- 1

    if MAKE_PLOTS:
        fig.savefig(TEST_OUTPUT_DIR / "test_inertia_of_model.pdf",
                    bbox_inches="tight")
コード例 #2
0
def test_demonstrate_hospitalization_delay_changes():
    """
    Demonstrates that hospitalization peaks are delayed relative to new cases
    by varying number of days depending on how well states were prepared at
    various points in time
    """

    if MAKE_PLOTS:
        return

    t_list = np.linspace(0, 230, 230 + 1)
    sets = {
        "early": {
            "states": ["NY", "NJ", "CT"],
            "delay": 0
        },
        "late": {
            "states": ["FL", "TX", "GA", "CA", "AZ"],
            "delay": 12
        },
        "steady": {
            "states": ["PA", "IL"],
            "delay": 7
        },
    }

    model = NowcastingSEIRModel()
    for name, s in sets.items():
        fig, ax = plt.subplots()
        for state in s["states"]:
            (rt, nc, tests, h,
             nd) = HistoricalData.get_state_data_for_dates(state,
                                                           t_list,
                                                           no_functions=True)
            fh = h / (nc * model.t_i)
            fd = (nd * model.t_h()) / h
            pos = nc / tests
            hdelay = h.shift(s["delay"])

            plt.scatter(hdelay.values, nd.values, marker=".", label=state)
            plt.plot([hdelay.values[-1]], [nd.values[-1]], marker="o")

        plt.plot([1e3, 1e4], [2e1, 2e2], linestyle="--")
        plt.xlabel(f"Hospitalizations (delayed %s days)" % s["delay"])
        plt.ylabel("new Deaths")
        plt.yscale("log")
        plt.xscale("log")
        # plt.ylim((0.01, 1.0))
        fig.legend()
        fig.savefig(TEST_OUTPUT_DIR /
                    (f"test_ratio_evolution_%s_states.pdf" % name))