コード例 #1
0
ファイル: test_basis.py プロジェクト: tuelwer/pysensors
def test_identity_matrix_representation(data_random):
    matrix = data_random

    basis = Identity()
    basis.fit(matrix)

    np.testing.assert_allclose(matrix.T, basis.matrix_representation())
コード例 #2
0
ファイル: test_pysensors.py プロジェクト: knut0815/pysensors
def test_prefit_basis(data_random):
    data = data_random
    basis = Identity()
    basis.fit(data)

    # This data should be ignored during the fit
    data_to_ignore = nan * data_random

    model = SensorSelector(basis=basis)
    model.fit(data_to_ignore, prefit_basis=True)
    assert not any(isnan(model.get_selected_sensors()))
コード例 #3
0
ファイル: test_pysensors.py プロジェクト: knut0815/pysensors
def test_update_n_basis_modes_refit(data_random):
    data = data_random
    n_basis_modes = 5
    model = SensorSelector(basis=Identity(n_basis_modes=n_basis_modes))
    model.fit(data)
    assert model.basis_matrix_.shape[1] == n_basis_modes

    model.update_n_basis_modes(n_basis_modes + 1, data)
    assert model.basis_matrix_.shape[1] == n_basis_modes + 1
コード例 #4
0
ファイル: test_sspoc.py プロジェクト: wangcj05/pysensors
def test_prefit_basis(data_binary_classification):
    x, y, _ = data_binary_classification
    basis = Identity().fit(x)
    model_prefit = SSPOC(basis=basis)
    model_prefit.fit(x, y, prefit_basis=True, quiet=True)

    model_standard = SSPOC().fit(x, y, quiet=True)

    np.testing.assert_allclose(model_prefit.sensor_coef_,
                               model_standard.sensor_coef_)
コード例 #5
0
ファイル: test_pysensors.py プロジェクト: knut0815/pysensors
def test_update_n_basis_modes_errors(data_random):
    data = data_random
    n_basis_modes = 5
    model = SensorSelector(basis=Identity(n_basis_modes=n_basis_modes))

    model.fit(data)

    with pytest.raises(ValueError):
        model.update_n_basis_modes(0)
    with pytest.raises(ValueError):
        model.update_n_basis_modes("5")
    with pytest.raises(ValueError):
        model.update_n_basis_modes(data.shape[0] + 1)
    # Need to pass x when increasing n_basis_modes beyond capacity
    # of the original basis
    with pytest.raises(ValueError):
        model.update_n_basis_modes(n_basis_modes + 1)
コード例 #6
0
ファイル: test_basis.py プロジェクト: tuelwer/pysensors
"""Unit tests for basis classes"""
import numpy as np
import pytest
from sklearn.exceptions import NotFittedError

from pysensors.basis import Identity
from pysensors.basis import RandomProjection
from pysensors.basis import SVD


@pytest.mark.parametrize("basis", [Identity(), SVD(), RandomProjection()])
def test_not_fitted(basis):
    with pytest.raises(NotFittedError):
        basis.matrix_representation()


def test_identity_matrix_representation(data_random):
    matrix = data_random

    basis = Identity()
    basis.fit(matrix)

    np.testing.assert_allclose(matrix.T, basis.matrix_representation())


@pytest.mark.parametrize("basis", [SVD, RandomProjection])
def test_matrix_representation(basis, data_random):
    data = data_random
    n_features = data.shape[1]
    n_components = 5
コード例 #7
0
ファイル: test_pysensors.py プロジェクト: knut0815/pysensors
        pytest.lazy_fixture("data_vandermonde"),
        pytest.lazy_fixture("data_random")
    ],
)
def test_get_all_sensors(data):
    x = data
    max_sensors = x.shape[1]

    model = SensorSelector()
    model.fit(x)
    assert len(model.get_all_sensors()) == max_sensors


@pytest.mark.parametrize(
    "basis",
    [Identity(), SVD(), RandomProjection(n_basis_modes=5)])
def test_basis_compatibility(data_vandermonde, basis):
    x = data_vandermonde
    model = SensorSelector(basis=basis)
    model.fit(x)
    check_is_fitted(model)


def test_n_sensors(data_random):

    # Check for bad inputs
    with pytest.raises(ValueError):
        model = SensorSelector(n_sensors=0)
    with pytest.raises(ValueError):
        model = SensorSelector(n_sensors=5.4)
    with pytest.raises(ValueError):