def writeCheckpoints(self, filename): ts = self.__uqManager.getTimeStepsOfInterest() names = self.__params.getNames() names.append('f_\\mathcal{I}(x)') for iteration in range(self.__knowledge.getIteration() + 1): # myjson = {"Grid": {"dimNames": ["E", "K_1c", "rho", "n"], # "matrixEntries": ["E", "K_1c", "rho", "n"]}, # "Set": {"path": "", # "grids": [], # "alphas": [], # "paramValues": list(ts), # "paramName": "Time"}} myjson = { "Grid": { "dimNames": ["phi", "e", "K_L"], "matrixEntries": ["phi", "e", "K_L"] }, "Set": { "path": "", "grids": [], "alphas": [], "paramValues": list(ts), "paramName": "Time" } } for t in ts: grid, surplus = self.__knowledge.getSparseGridFunction( self._qoi, t, iteration=iteration) out = "%s.t%f.i%i" % (filename, t, iteration) out_grid = "%s.grid" % out out_alpha = "%s.alpha.arff" % out writeGrid(out_grid, grid) writeAlphaARFF(out_alpha, surplus) # collect information for json myjson["Set"]["grids"].append(os.path.abspath(out_grid)) myjson["Set"]["alphas"].append(os.path.abspath(out_alpha)) # write json to file fd = open("%s.%i.json" % (filename, iteration), "w") json.dump(myjson, fd, indent=2) fd.close()
def writeCheckpoints(self, filename): ts = self.__learner.getTimeStepsOfInterest() names = self.__params.getNames() names.append('f_\\mathcal{I}(x)') for iteration in xrange(self.__knowledge.getIteration() + 1): # myjson = {"Grid": {"dimNames": ["E", "K_1c", "rho", "n"], # "matrixEntries": ["E", "K_1c", "rho", "n"]}, # "Set": {"path": "", # "grids": [], # "alphas": [], # "paramValues": list(ts), # "paramName": "Time"}} myjson = {"Grid": {"dimNames": ["phi", "e", "K_L"], "matrixEntries": ["phi", "e", "K_L"]}, "Set": {"path": "", "grids": [], "alphas": [], "paramValues": list(ts), "paramName": "Time"}} for t in ts: grid, surplus = self.__knowledge.getSparseGridFunction(self._qoi, t, iteration=iteration) out = "%s.t%f.i%i" % (filename, t, iteration) out_grid = "%s.grid" % out out_alpha = "%s.alpha.arff" % out writeGrid(out_grid, grid) writeAlphaARFF(out_alpha, surplus) # collect information for json myjson["Set"]["grids"].append(os.path.abspath(out_grid)) myjson["Set"]["alphas"].append(os.path.abspath(out_alpha)) # write json to file fd = open("%s.%i.json" % (filename, iteration), "w") json.dump(myjson, fd, indent=2) fd.close()
def computeHierarchicalCoefficients(self, grid, alpha, addedGridPoints=None): nodalValues = dehierarchize(grid, alpha) ixs = np.array([], dtype="int") for i, yi in enumerate(nodalValues): if yi < 0: ixs = np.append(ixs, i) nodalValues[i] = 0.0 if len(ixs) > 0: # compute the coefficients for each grid point by estimating # the local density config = { 'grid_filename': "positive.grid", "regularization_type": "Laplace", "crossValidation_enable": True, "crossValidation_enable": True, "crossValidation_kfold": 5, "crossValidation_silent": True } writeGrid(config['grid_filename'], grid) alpha = SGDEdist.byLearnerSGDEConfig(self.trainSamples.array(), bounds=None, config=config).alpha.array() # check if the coefficients of the new grid points are positive if addedGridPoints is not None: gs = grid.getStorage() assert all([ alpha[gs.getSequenceNumber(gp)] > -1e-13 for gp in addedGridPoints ]) return alpha
def estimateSGDEDensity(functionName, trainSamples, testSamples=None, bounds=None, iteration=0, plot=False, out=True, label="sgde_zero", candidates="intersections", interpolation="setToZero"): print("train: %i x %i (mean=%g, var=%g)" % (trainSamples.shape[0], trainSamples.shape[1], np.mean(trainSamples), np.var(trainSamples))) if testSamples is not None: print("test : %i x %i (mean=%g, var=%g)" % (testSamples.shape[0], testSamples.shape[1], np.mean(testSamples), np.var(testSamples))) candidateSearchAlgorithm = strToCandidateSearchAlgorithm(candidates) interpolationAlgorithm = strToInterpolationAlgorithm(interpolation) results = {} crossEntropies = {} config = { "grid_level": 1, "grid_type": "linear", "grid_maxDegree": 1, "refinement_numSteps": 0, "refinement_numPoints": 3, "solver_threshold": 1e-10, "solver_verbose": False, "regularization_type": "Laplace", "crossValidation_enable": True, "crossValidation_kfold": 5, "crossValidation_silent": True, "sgde_makePositive": False } pathResults = os.path.join("data", label) key = 1 bestCV = float("Inf") bestDist = None # stats stats = { 'config': { 'functionName': functionName, 'numDims': 2, 'adaptive': True, 'refnums': 0, 'consistentGrid': True, 'candidateSearchAlgorithm': candidates, 'interpolationAlgorithm': interpolation, 'maxNumGridPoints': 0, 'iteration': iteration }, 'trainSamples': trainSamples, 'testSamples': testSamples } for level in range(2, 7): print("-" * 60) print("l=%i" % level) for refinementSteps in range(0, 5): config["grid_level"] = level config["refinement_numSteps"] = refinementSteps sgdeDist = SGDEdist.byLearnerSGDEConfig(trainSamples, config=config, bounds=bounds) # ----------------------------------------------------------- grid, alpha = sgdeDist.grid, sgdeDist.alpha cvSgde = sgdeDist.crossEntropy(testSamples) maxLevel = grid.getStorage().getMaxLevel() numDims = grid.getStorage().getDimension() print(" " + "-" * 30) print(" #ref = %i: gs=%i -> CV test = %g" % (refinementSteps, sgdeDist.grid.getSize(), cvSgde)) # ----------------------------------------------------------- # make it positive positiveGrid = grid.clone() positiveAlpha_vec = DataVector(alpha) opPositive = createOperationMakePositive(candidateSearchAlgorithm, interpolationAlgorithm, True, False) opPositive.makePositive(positiveGrid, positiveAlpha_vec, True) # scale to unit integrand positiveAlpha = positiveAlpha_vec.array() positiveSgdeDist = SGDEdist(positiveGrid, positiveAlpha, trainSamples, bounds=bounds) # ----------------------------------------------------------- cvPositiveSgde = positiveSgdeDist.crossEntropy(testSamples) if plot and numDims == 2: fig = plt.figure() plotSG2d(grid, alpha, show_negative=True, show_grid_points=True) plt.title("pos: N=%i: vol=%g, log=%g" % (positiveGrid.getSize(), doQuadrature(positiveGrid, positiveAlpha), cvPositiveSgde)) plt.tight_layout() if out: plt.savefig( os.path.join( pathResults, "%s_density_pos_i%i_l%i_r%i.jpg" % (label, iteration, level, refinementSteps))) plt.savefig( os.path.join( pathResults, "%s_density_pos_i%i_l%i_r%i.pdf" % (label, iteration, level, refinementSteps))) else: plt.close(fig) # ----------------------------------------------------------- print(" positive: gs=%i -> CV test = %g" % (positiveGrid.getSize(), cvPositiveSgde)) # ----------------------------------------------------------- # select the best density available based on the given criterion results[key] = {'config': config, 'dist': positiveSgdeDist} crossEntropies[key] = cvPositiveSgde key += 1 candidateSearch = opPositive.getCandidateSetAlgorithm() if cvPositiveSgde < bestCV: bestCV = cvPositiveSgde bestDist = positiveSgdeDist numComparisons = candidateSearch.costsComputingCandidates() # update the stats -> just for the current best one # write the stats of the current best results to the stats dict C = np.ndarray(numDims - 1, dtype="int") M = np.sum([1 for i in range(len(alpha)) if alpha[i] < 0]) for d in range(2, numDims + 1): C[d - 2] = binom(M, d) stats['config']['refnums'] = refinementSteps stats['config']['adaptive'] = refinementSteps > 0 stats['negSGDE_json'] = sgdeDist.toJson() stats['posSGDE_json'] = positiveSgdeDist.toJson() stats['level'] = level stats['maxLevel'] = maxLevel stats['fullGridSize'] = (2**maxLevel - 1)**numDims stats['sparseGridSize'] = grid.getSize() stats['discretizedGridSize'] = positiveGrid.getSize() stats['crossEntropyTrainZeroSGDE'] = sgdeDist.crossEntropy( trainSamples) stats[ 'crossEntropyTrainDiscretizedSGDE'] = positiveSgdeDist.crossEntropy( trainSamples) stats['crossEntropyTestZeroSGDE'] = cvSgde stats['crossEntropyTestDiscretizedSGDE'] = cvPositiveSgde stats['numCandidates'] = int(candidateSearch.numCandidates()) stats['numCandidatesPerLevel'] = np.array( candidateSearch.numCandidatesPerLevel().array(), dtype="int") stats['numCandidatesPerIteration'] = np.array( candidateSearch.numCandidatesPerIteration().array(), dtype="int") stats[ 'costsCandidateSearch'] = candidateSearch.costsComputingCandidates( ) stats['costsCandidateSearchBinomial'] = int(C.sum()) stats['costsCandidateSearchPerIteration'] = np.array( candidateSearch.costsComputingCandidatesPerIteration( ).array(), dtype="int") stats['costsCandidateSearchPerIterationBinomial'] = C if plot and numDims == 2: fig = plt.figure() plotSG2d( positiveGrid, positiveAlpha, show_negative=True, show_grid_points=False, colorbarLabel= r"$f_{\mathcal{I}^\text{SG} \cup \mathcal{I}^\text{ext}}$" ) plt.title(r"positive: $N=%i/%i$; \# comparisons$=%i$" % (positiveGrid.getSize(), (2**maxLevel - 1)**numDims, numComparisons)) plt.xlabel(r"$\xi_1$") plt.ylabel(r"$\xi_2$") # plt.title(r"N=%i $\rightarrow$ %i: log=%g $\rightarrow$ %g" % (sgdeDist.grid.getSize(), # positiveSgdeDist.grid.getSize(), # cvSgde, # cvPositiveSgde)) plt.tight_layout() plt.savefig( os.path.join( pathResults, "%s_pos_i%i_l%i_r%i.jpg" % (label, iteration, level, refinementSteps))) plt.savefig( os.path.join( pathResults, "%s_pos_i%i_l%i_r%i.pdf" % (label, iteration, level, refinementSteps))) if out: plt.close(fig) fig, ax, _ = plotSG3d(positiveGrid, positiveAlpha) ax.set_zlabel( r"$f_{\mathcal{I}^{\text{SG}} \cup \mathcal{I}^\text{ext}}(\xi_1, \xi_2)$", fontsize=20) ax.set_xlabel(r"$\xi_1$", fontsize=20) ax.set_ylabel(r"$\xi_2$", fontsize=20) plt.tight_layout() plt.savefig( os.path.join( pathResults, "%s_pos_i%i_l%i_r%i_3d.jpg" % (label, iteration, level, refinementSteps))) plt.savefig( os.path.join( pathResults, "%s_pos_i%i_l%i_r%i_3d.pdf" % (label, iteration, level, refinementSteps))) if out: plt.close(fig) if plot and numDims == 2 and not out: plt.show() if out: # save stats filename = os.path.join( "data", label, "stats_d%i_a%i_r%i_i%i_%s_%s.pkl" % (numDims, 1, refinementSteps, iteration, candidates, interpolation)) fd = open(filename, "w") pkl.dump(stats, fd) fd.close() print("stats saved to -> '%s'" % filename) # dictionary that stores the information on the estimated densities myjson = { "Grid": { "dimNames": ["phi", "log(K_A)"], "matrixEntries": ["phi", "log(K_A)"] }, "Set": { "path": "", "grids": [], "alphas": [], "paramValues": [], "paramName": "grid_size" } } for key, result in list(results.items()): config = result['config'] dist = result['dist'] # serialize grid and coefficients out = "sgde.i%i.k%i.N%i" % (iteration, key, dist.grid.getSize()) out_grid = os.path.join(pathResults, "%s.grid" % out) out_alpha = os.path.join(pathResults, "%s.alpha.arff" % out) writeGrid(out_grid, dist.grid) writeAlphaARFF(out_alpha, dist.alpha) # collect information for json myjson["Set"]["grids"].append(os.path.abspath(out_grid)) myjson["Set"]["alphas"].append(os.path.abspath(out_alpha)) myjson["Set"]["paramValues"].append(crossEntropies[key]) # ----------------------------------------------------------- # serialize the config out_config = os.path.join(pathResults, "sgde.i%i.k%i.config" % (iteration, key)) fd = open(out_config, "w") json.dump(config, fd, ensure_ascii=True, indent=True) fd.close() crossEntropies[key] = (crossEntropies[key], out_grid, out_alpha, out_config) # sort the results in myjson according to the cross entropy ixs = np.argsort(myjson["Set"]["paramValues"]) myjson["Set"]["grids"] = [myjson["Set"]["grids"][ix] for ix in ixs] myjson["Set"]["alphas"] = [myjson["Set"]["alphas"][ix] for ix in ixs] myjson["Set"]["paramValues"] = [ myjson["Set"]["paramValues"][ix] for ix in ixs ] # serialize myjson out_config = os.path.join(pathResults, "sgde_visualization.i%i.config" % iteration) fd = open(out_config, "w") json.dump(myjson, fd, ensure_ascii=True, indent=True) fd.close() # serialize cross entropies out_crossEntropies = os.path.join( pathResults, "sgde_cross_entropies.i%i.csv" % iteration) fd = open(out_crossEntropies, 'wb') file_writer = csv.writer(fd) file_writer.writerow(["crossEntropy", "grid", "alpha", "sgdeConfig"]) for out in list(crossEntropies.values()): file_writer.writerow(out) fd.close() # serialize samples np.savetxt( os.path.join(pathResults, "sgde_train_samples.i%i.csv" % iteration), trainSamples) np.savetxt( os.path.join(pathResults, "sgde_test_samples.i%i.csv" % iteration), testSamples) # serialize best configuration to json out_bestDist = os.path.join(pathResults, "sgde_best_config.i%i.json" % iteration) text = bestDist.toJson() fd = open(out_bestDist, "w") fd.write(text) fd.close() return bestDist, stats