コード例 #1
0
    def estimate(self, A, grid, alpha, k, U, T):
        r"""
        Extraction of the expectation the given sg function by
        assuming constant distribution function in the support range
        of each node.
        """
        gs = grid.getStorage()

        def f(p):
            val = evalSGFunction(grid, alpha, p)
            return val ** k

        n_grid, n_alpha = discretize(grid, alpha, f, refnums=0)

        # add the density measure
        for i in range(gs.size()):
            p = [gs.getCoordinates(gs.getPoint(i), j) for j in range(gs.getDimension())]
            q = U.pdf(tr.trans(p), marginal=True)
            n_alpha[i] *= prod(q)

        # Estimate the expectation value
        return A * doQuadrature(n_grid, n_alpha)
コード例 #2
0
    def estimate(self, A, grid, alpha, k, U, T):
        r"""
        Extraction of the expectation the given sg function by
        assuming constant distribution function in the support range
        of each node.
        """
        gs = grid.getStorage()

        def f(p):
            val = evalSGFunction(grid, alpha, p)
            return val ** k

        n_grid, n_alpha = discretize(grid, alpha, f, refnums=0)

        # add the density measure
        for i in xrange(gs.size()):
            p = [gs.get(i).getCoord(j) for j in range(gs.dim())]
            q = U.pdf(tr.trans(p), marginal=True)
            n_alpha[i] *= prod(q)

        # Estimate the expectation value
        return A * doQuadrature(n_grid, n_alpha)
コード例 #3
0
def estimateSGDEDensity(functionName,
                        trainSamples,
                        testSamples=None,
                        bounds=None,
                        iteration=0,
                        plot=False,
                        out=True,
                        label="sgde_zero",
                        candidates="intersections",
                        interpolation="setToZero"):
    print("train: %i x %i (mean=%g, var=%g)" %
          (trainSamples.shape[0], trainSamples.shape[1], np.mean(trainSamples),
           np.var(trainSamples)))
    if testSamples is not None:
        print("test : %i x %i (mean=%g, var=%g)" %
              (testSamples.shape[0], testSamples.shape[1],
               np.mean(testSamples), np.var(testSamples)))

    candidateSearchAlgorithm = strToCandidateSearchAlgorithm(candidates)
    interpolationAlgorithm = strToInterpolationAlgorithm(interpolation)

    results = {}
    crossEntropies = {}
    config = {
        "grid_level": 1,
        "grid_type": "linear",
        "grid_maxDegree": 1,
        "refinement_numSteps": 0,
        "refinement_numPoints": 3,
        "solver_threshold": 1e-10,
        "solver_verbose": False,
        "regularization_type": "Laplace",
        "crossValidation_enable": True,
        "crossValidation_kfold": 5,
        "crossValidation_silent": True,
        "sgde_makePositive": False
    }

    pathResults = os.path.join("data", label)
    key = 1
    bestCV = float("Inf")
    bestDist = None

    # stats
    stats = {
        'config': {
            'functionName': functionName,
            'numDims': 2,
            'adaptive': True,
            'refnums': 0,
            'consistentGrid': True,
            'candidateSearchAlgorithm': candidates,
            'interpolationAlgorithm': interpolation,
            'maxNumGridPoints': 0,
            'iteration': iteration
        },
        'trainSamples': trainSamples,
        'testSamples': testSamples
    }

    for level in range(2, 7):
        print("-" * 60)
        print("l=%i" % level)
        for refinementSteps in range(0, 5):
            config["grid_level"] = level
            config["refinement_numSteps"] = refinementSteps
            sgdeDist = SGDEdist.byLearnerSGDEConfig(trainSamples,
                                                    config=config,
                                                    bounds=bounds)
            # -----------------------------------------------------------
            grid, alpha = sgdeDist.grid, sgdeDist.alpha
            cvSgde = sgdeDist.crossEntropy(testSamples)

            maxLevel = grid.getStorage().getMaxLevel()
            numDims = grid.getStorage().getDimension()

            print("  " + "-" * 30)
            print("  #ref = %i: gs=%i -> CV test = %g" %
                  (refinementSteps, sgdeDist.grid.getSize(), cvSgde))
            # -----------------------------------------------------------
            # make it positive
            positiveGrid = grid.clone()
            positiveAlpha_vec = DataVector(alpha)
            opPositive = createOperationMakePositive(candidateSearchAlgorithm,
                                                     interpolationAlgorithm,
                                                     True, False)
            opPositive.makePositive(positiveGrid, positiveAlpha_vec, True)

            # scale to unit integrand
            positiveAlpha = positiveAlpha_vec.array()
            positiveSgdeDist = SGDEdist(positiveGrid,
                                        positiveAlpha,
                                        trainSamples,
                                        bounds=bounds)
            # -----------------------------------------------------------
            cvPositiveSgde = positiveSgdeDist.crossEntropy(testSamples)

            if plot and numDims == 2:
                fig = plt.figure()
                plotSG2d(grid,
                         alpha,
                         show_negative=True,
                         show_grid_points=True)
                plt.title("pos: N=%i: vol=%g, log=%g" %
                          (positiveGrid.getSize(),
                           doQuadrature(positiveGrid,
                                        positiveAlpha), cvPositiveSgde))
                plt.tight_layout()
                if out:
                    plt.savefig(
                        os.path.join(
                            pathResults, "%s_density_pos_i%i_l%i_r%i.jpg" %
                            (label, iteration, level, refinementSteps)))
                    plt.savefig(
                        os.path.join(
                            pathResults, "%s_density_pos_i%i_l%i_r%i.pdf" %
                            (label, iteration, level, refinementSteps)))
                else:
                    plt.close(fig)

            # -----------------------------------------------------------
            print("  positive: gs=%i -> CV test = %g" %
                  (positiveGrid.getSize(), cvPositiveSgde))
            # -----------------------------------------------------------
            # select the best density available based on the given criterion
            results[key] = {'config': config, 'dist': positiveSgdeDist}
            crossEntropies[key] = cvPositiveSgde
            key += 1
            candidateSearch = opPositive.getCandidateSetAlgorithm()

            if cvPositiveSgde < bestCV:
                bestCV = cvPositiveSgde
                bestDist = positiveSgdeDist
                numComparisons = candidateSearch.costsComputingCandidates()

                # update the stats -> just for the current best one
                # write the stats of the current best results to the stats dict
                C = np.ndarray(numDims - 1, dtype="int")
                M = np.sum([1 for i in range(len(alpha)) if alpha[i] < 0])
                for d in range(2, numDims + 1):
                    C[d - 2] = binom(M, d)

                stats['config']['refnums'] = refinementSteps
                stats['config']['adaptive'] = refinementSteps > 0
                stats['negSGDE_json'] = sgdeDist.toJson()
                stats['posSGDE_json'] = positiveSgdeDist.toJson()
                stats['level'] = level
                stats['maxLevel'] = maxLevel
                stats['fullGridSize'] = (2**maxLevel - 1)**numDims
                stats['sparseGridSize'] = grid.getSize()
                stats['discretizedGridSize'] = positiveGrid.getSize()
                stats['crossEntropyTrainZeroSGDE'] = sgdeDist.crossEntropy(
                    trainSamples)
                stats[
                    'crossEntropyTrainDiscretizedSGDE'] = positiveSgdeDist.crossEntropy(
                        trainSamples)
                stats['crossEntropyTestZeroSGDE'] = cvSgde
                stats['crossEntropyTestDiscretizedSGDE'] = cvPositiveSgde
                stats['numCandidates'] = int(candidateSearch.numCandidates())
                stats['numCandidatesPerLevel'] = np.array(
                    candidateSearch.numCandidatesPerLevel().array(),
                    dtype="int")
                stats['numCandidatesPerIteration'] = np.array(
                    candidateSearch.numCandidatesPerIteration().array(),
                    dtype="int")
                stats[
                    'costsCandidateSearch'] = candidateSearch.costsComputingCandidates(
                    )
                stats['costsCandidateSearchBinomial'] = int(C.sum())
                stats['costsCandidateSearchPerIteration'] = np.array(
                    candidateSearch.costsComputingCandidatesPerIteration(
                    ).array(),
                    dtype="int")
                stats['costsCandidateSearchPerIterationBinomial'] = C

                if plot and numDims == 2:
                    fig = plt.figure()
                    plotSG2d(
                        positiveGrid,
                        positiveAlpha,
                        show_negative=True,
                        show_grid_points=False,
                        colorbarLabel=
                        r"$f_{\mathcal{I}^\text{SG} \cup \mathcal{I}^\text{ext}}$"
                    )
                    plt.title(r"positive: $N=%i/%i$; \# comparisons$=%i$" %
                              (positiveGrid.getSize(),
                               (2**maxLevel - 1)**numDims, numComparisons))
                    plt.xlabel(r"$\xi_1$")
                    plt.ylabel(r"$\xi_2$")
                    #                     plt.title(r"N=%i $\rightarrow$ %i: log=%g $\rightarrow$ %g" % (sgdeDist.grid.getSize(),
                    #                                                                                    positiveSgdeDist.grid.getSize(),
                    #                                                                                    cvSgde,
                    #                                                                                    cvPositiveSgde))
                    plt.tight_layout()
                    plt.savefig(
                        os.path.join(
                            pathResults, "%s_pos_i%i_l%i_r%i.jpg" %
                            (label, iteration, level, refinementSteps)))
                    plt.savefig(
                        os.path.join(
                            pathResults, "%s_pos_i%i_l%i_r%i.pdf" %
                            (label, iteration, level, refinementSteps)))
                    if out:
                        plt.close(fig)

                    fig, ax, _ = plotSG3d(positiveGrid, positiveAlpha)
                    ax.set_zlabel(
                        r"$f_{\mathcal{I}^{\text{SG}} \cup \mathcal{I}^\text{ext}}(\xi_1, \xi_2)$",
                        fontsize=20)
                    ax.set_xlabel(r"$\xi_1$", fontsize=20)
                    ax.set_ylabel(r"$\xi_2$", fontsize=20)

                    plt.tight_layout()
                    plt.savefig(
                        os.path.join(
                            pathResults, "%s_pos_i%i_l%i_r%i_3d.jpg" %
                            (label, iteration, level, refinementSteps)))
                    plt.savefig(
                        os.path.join(
                            pathResults, "%s_pos_i%i_l%i_r%i_3d.pdf" %
                            (label, iteration, level, refinementSteps)))
                    if out:
                        plt.close(fig)

            if plot and numDims == 2 and not out:
                plt.show()

    if out:
        # save stats
        filename = os.path.join(
            "data", label, "stats_d%i_a%i_r%i_i%i_%s_%s.pkl" %
            (numDims, 1, refinementSteps, iteration, candidates,
             interpolation))
        fd = open(filename, "w")
        pkl.dump(stats, fd)
        fd.close()
        print("stats saved to -> '%s'" % filename)

        # dictionary that stores the information on the estimated densities
        myjson = {
            "Grid": {
                "dimNames": ["phi", "log(K_A)"],
                "matrixEntries": ["phi", "log(K_A)"]
            },
            "Set": {
                "path": "",
                "grids": [],
                "alphas": [],
                "paramValues": [],
                "paramName": "grid_size"
            }
        }

        for key, result in list(results.items()):
            config = result['config']
            dist = result['dist']
            # serialize grid and coefficients
            out = "sgde.i%i.k%i.N%i" % (iteration, key, dist.grid.getSize())
            out_grid = os.path.join(pathResults, "%s.grid" % out)
            out_alpha = os.path.join(pathResults, "%s.alpha.arff" % out)
            writeGrid(out_grid, dist.grid)
            writeAlphaARFF(out_alpha, dist.alpha)

            # collect information for json
            myjson["Set"]["grids"].append(os.path.abspath(out_grid))
            myjson["Set"]["alphas"].append(os.path.abspath(out_alpha))
            myjson["Set"]["paramValues"].append(crossEntropies[key])
            # -----------------------------------------------------------
            # serialize the config
            out_config = os.path.join(pathResults,
                                      "sgde.i%i.k%i.config" % (iteration, key))
            fd = open(out_config, "w")
            json.dump(config, fd, ensure_ascii=True, indent=True)
            fd.close()

            crossEntropies[key] = (crossEntropies[key], out_grid, out_alpha,
                                   out_config)

        # sort the results in myjson according to the cross entropy
        ixs = np.argsort(myjson["Set"]["paramValues"])
        myjson["Set"]["grids"] = [myjson["Set"]["grids"][ix] for ix in ixs]
        myjson["Set"]["alphas"] = [myjson["Set"]["alphas"][ix] for ix in ixs]
        myjson["Set"]["paramValues"] = [
            myjson["Set"]["paramValues"][ix] for ix in ixs
        ]

        # serialize myjson
        out_config = os.path.join(pathResults,
                                  "sgde_visualization.i%i.config" % iteration)
        fd = open(out_config, "w")
        json.dump(myjson, fd, ensure_ascii=True, indent=True)
        fd.close()

        # serialize cross entropies
        out_crossEntropies = os.path.join(
            pathResults, "sgde_cross_entropies.i%i.csv" % iteration)
        fd = open(out_crossEntropies, 'wb')
        file_writer = csv.writer(fd)
        file_writer.writerow(["crossEntropy", "grid", "alpha", "sgdeConfig"])
        for out in list(crossEntropies.values()):
            file_writer.writerow(out)
        fd.close()

        # serialize samples
        np.savetxt(
            os.path.join(pathResults,
                         "sgde_train_samples.i%i.csv" % iteration),
            trainSamples)
        np.savetxt(
            os.path.join(pathResults, "sgde_test_samples.i%i.csv" % iteration),
            testSamples)

        # serialize best configuration to json
        out_bestDist = os.path.join(pathResults,
                                    "sgde_best_config.i%i.json" % iteration)
        text = bestDist.toJson()
        fd = open(out_bestDist, "w")
        fd.write(text)
        fd.close()

    return bestDist, stats
コード例 #4
0
ファイル: test_densityPlot.py プロジェクト: pfluegdk/SGpp
grid = Grid.createLinearGrid(2)
grid.getGenerator().regular(level)
gs = grid.getStorage()

nodalValues = DataVector(grid.getSize())
p = DataVector(gs.getDimension())
for i in range(gs.getSize()):
    gs.getCoordinates(gs.getPoint(i), p)
    nodalValues[i] = dist.pdf(p.array())

alpha = hierarchize(grid, nodalValues)

# plot the result
fig = plt.figure()
plotSG2d(grid, alpha)
plt.title("plotSG: vol = %g" % (doQuadrature(grid, alpha)))
fig.show()

sgdeDist = SGDEdist(grid, alpha)

fig = plt.figure()
plotSGDE2d(sgdeDist)
plt.title("plotSGDE: vol = %g" % (doQuadrature(grid, alpha)))
fig.show()

fig = plt.figure()
plotDensity2d(sgdeDist)
plt.title("plotDensity: vol = %g" % (doQuadrature(grid, alpha)))
fig.show()

plt.show()
コード例 #5
0
def estimateDensitySGDE(trainSamplesUnit,
                        testSamplesUnit=None,
                        testSamplesProb=None,
                        pathResults="/tmp",
                        dist=None,
                        optimization='l2',
                        iteration=0,
                        levels=[1, 2, 3, 4, 5],
                        refNr=0, refPoints=0,
                        nSamples=1000):
    """
    Estimates a sparse grid density for different levels and refinements by
    optimizing over a given quantity.

    @param trainSamplesUnit:
    @param testSamplesUnit:
    @param testSamplesProb:
    @param pathResults:
    @param dist:
    @param optimization:
    @param iteration:
    @param levels:
    @param refNr:
    @param refPoints:
    """
    config = """
[general]
method = dmest

[files]
inFileTrain = %s
usingTrain = %s
inFileTest = %s
outFileTest = %s
usingTest = %s

[dmest]
gridFile = %s
lambda = -1 # 0.01
regType=Laplace
refNr = %i
refPoints = %i
writeGridFile = %s
writeAlphaFile = %s
samp_rejectionTrialMax = 5000
samp_numSamples = %i
samp_outFile = %s
printSurfaceFile = %s
    """

    # write the samples to file
    if len(trainSamplesUnit.shape) == 1:
        n, dim = trainSamplesUnit.shape[0], 1
        usingTrainTag = "%i" % dim
    else:
        n, dim = trainSamplesUnit.shape
        usingTrainTag = "1:%i" % dim

    trainSamplesUnitFile = os.path.join(pathResults,
                                        "samples_%i_%i_train.csv" % (iteration, n))
    np.savetxt(trainSamplesUnitFile, trainSamplesUnit)

    testSamplesUnitFile = ""
    usingTestTag = ""
    if testSamplesUnit is not None:
        testSamplesUnitFile = os.path.join(pathResults,
                                           "samples_%i_%i_test.csv" % (iteration, n))
        if dim == 1:
            usingTestTag = "%i" % dim
        else:
            usingTestTag = "1:%i" % dim
        np.savetxt(testSamplesUnitFile, testSamplesUnit)

    # collector arrays
    accGridSizes = np.array([])
    accLevels = np.array([])
    accL2error = np.array([])
    accCrossEntropy = np.array([])
    accKLDivergence = np.array([])

    # best estimation
    ans = None
    bestMeasure = 1e20
    bestSetting = None

    for level in levels:
        # define output files
        gridFile = os.path.join(pathResults,
                                "samples_%i_%i_l%i.grid" % (iteration, n, level))
        alphaFile = os.path.join(pathResults,
                                 "samples_%i_%i_l%i.alpha.arff" % (iteration, n, level))
        sampleFile = os.path.join(pathResults,
                                  "samples_%i_%i_l%i.csv" % (iteration, n, level))
        likelihoodFile = ""
        if testSamplesUnit is not None:
            likelihoodFile = os.path.join(pathResults,
                                          "samples_%i_%i_l%i_likelihood.csv" % (iteration, n, level))

        surfaceFile = ""
        if dim == 2:
            surfaceFile = os.path.join(pathResults,
                                       "samples_%i_%i_l%i.xyz" % (iteration, n, level))
        gnuplotJpegFile = os.path.join(pathResults,
                                       "samples_%i_%i_l%i_gnuplot.jpg" % (iteration, n, level))
        sgdeJpegFile = os.path.join(pathResults,
                                    "samples_%i_%i_l%i_sgde.jpg" % (iteration, n, level))
        sgdePositiveJpegFile = os.path.join(pathResults,
                                            "samples_%i_%i_l%i_sgdePositive.jpg" % (iteration, n, level))
        configFile = os.path.join(pathResults,
                                  "sgde_%i_%i_l%i.cfg" % (iteration, n, level))
        gnuplotConfig = os.path.join(pathResults,
                                     "sgde_%i_%i_l%i.gnuplot" % (iteration, n, level))
        # generate the grid
        grid = Grid.createLinearBoundaryGrid(dim)
        grid.createGridGenerator().regular(level)

        if grid.getSize() <= n:
            print " l=%i" % level,
            fd = open(gridFile, "w")
            fd.write(grid.serialize())
            fd.close()

            # write config to file
            fd = open(configFile, "w")
            fd.write(config % (trainSamplesUnitFile,
                               usingTrainTag,
                               testSamplesUnitFile,
                               likelihoodFile,
                               usingTestTag,
                               gridFile,
                               refNr,
                               refPoints,
                               gridFile,
                               alphaFile,
                               nSamples,
                               sampleFile,
                               surfaceFile))
            fd.close()

            sgdeDist = SGDEdist.byConfig(configFile)
            grid, alpha = sgdeDist.grid, sgdeDist.alpha
            # -----------------------------------------------------------
            # do some plotting
            if dim == 2:
                # gnuplot
                sgdeDist.gnuplot(gnuplotJpegFile, gnuplotConfig=gnuplotConfig)
                # -----------------------------------------------------------
                # matplotlib
                l2error = np.NAN
                kldivergence = np.NAN
                crossEntropy = sgdeDist.crossEntropy(testSamplesUnit)

                if dist is not None:
                    l2error = dist.l2error(sgdeDist, testSamplesUnit, testSamplesProb)
                    kldivergence = dist.klDivergence(sgdeDist, testSamplesUnit, testSamplesProb)

                fig = plt.figure()
                plotSG2d(grid, alpha)
                plt.title("N=%i: vol=%g, kl=%g, log=%g, l2error=%g" % (grid.getSize(),
                                                                       doQuadrature(grid, alpha),
                                                                       kldivergence,
                                                                       crossEntropy,
                                                                       l2error))
                fig.savefig(sgdeJpegFile)
                plt.close(fig)
                # -----------------------------------------------------------
            # copy grid and coefficients
            gridFileNew = os.path.join(pathResults,
                                       "samples_%i_%i_sgde.grid" % (iteration, n))
            alphaFileNew = os.path.join(pathResults,
                                        "samples_%i_%i_sgde.alpha.arff" % (iteration, n))
            sampleFileNew = os.path.join(pathResults,
                                         "samples_%i_%i_sgde.csv" % (iteration, n))

            copy2(gridFile, gridFileNew)
            copy2(alphaFile, alphaFileNew)
            copy2(sampleFile, sampleFileNew)
            # -----------------------------------------------------------
#             # make it positive and do all over again
#             opPositive = OperationMakePositive(sgdeDist.grid)
#             alg = EstimateDensityAlgorithm(configFile)
#             opPositive.setInterpolationAlgorithm(alg)
#             grid, alpha = opPositive.makePositive(sgdeDist.alpha)

            # scale to unit integrand
            alpha.mult(1. / createOperationQuadrature(grid).doQuadrature(alpha))

            sgdeDist.grid = grid
            sgdeDist.alpha = alpha

            gridFileNew = os.path.join(pathResults,
                                       "samples_%i_%i_l%i_positive.grid" % (iteration, n, level))
            alphaFileNew = os.path.join(pathResults,
                                        "samples_%i_%i_l%i_positive.alpha.arff" % (iteration, n, level))
            fd = open(gridFileNew, "w")
            fd.write(Grid.serialize(grid))
            fd.close()

            writeAlphaARFF(alphaFileNew, alpha)
            # -----------------------------------------------------------
            # collect statistics
            accGridSizes = np.append(accGridSizes, grid.getSize())
            accLevels = np.append(accLevels, level)

            l2error = np.NAN
            kldivergence = np.NAN
            crossEntropy = sgdeDist.crossEntropy(testSamplesUnit)

            if dist is not None:
                l2error = dist.l2error(sgdeDist, testSamplesUnit, testSamplesProb)
                kldivergence = dist.klDivergence(sgdeDist, testSamplesUnit, testSamplesProb)

            accL2error = np.append(accL2error, l2error)
            accCrossEntropy = np.append(accCrossEntropy, crossEntropy)
            accKLDivergence = np.append(accKLDivergence, kldivergence)
            if dim == 2:
                # -----------------------------------------------------------
                # do some plotting
                fig = plt.figure()
                plotSG2d(grid, alpha)
                plt.title("N=%i: vol=%g, kl=%g, log=%g, l2error=%g" % (grid.getSize(),
                                                                       doQuadrature(grid, alpha),
                                                                       kldivergence,
                                                                       crossEntropy,
                                                                       l2error))
                fig.savefig(sgdePositiveJpegFile)
                plt.close(fig)
                # -----------------------------------------------------------
            # select the best density available based on the given criterion
            if optimization == 'crossEntropy':
                measure = crossEntropy
            elif optimization == 'kldivergence':
                measure = kldivergence
            elif optimization == 'l2':
                measure = l2error
            else:
                raise AttributeError('optimization "%s" is not known for density estimation' % optimization)

            isBest = measure < bestMeasure
            if isBest:
                bestMeasure = measure

            if ans is None or isBest:
                ans = sgdeDist
                bestSetting = {'level': level,
                               'gridSize': grid.getSize(),
                               'l2error': l2error,
                               'KLDivergence': kldivergence,
                               'crossEntropy': crossEntropy}

                # -----------------------------------------------------------
                # copy grid and coefficients
                gridFileNew = os.path.join(pathResults,
                                           "samples_%i_%i.grid" % (iteration, n))
                alphaFileNew = os.path.join(pathResults,
                                            "samples_%i_%i.alpha.arff" % (iteration, n))
                sampleFileNew = os.path.join(pathResults,
                                             "samples_%i_%i.csv" % (iteration, n))
                copy2(gridFile, gridFileNew)
                copy2(alphaFile, alphaFileNew)
                copy2(sampleFile, sampleFileNew)

                gridFileNew = os.path.join(pathResults,
                                           "samples_%i_%i_positive.grid" % (iteration, n))
                alphaFileNew = os.path.join(pathResults,
                                            "samples_%i_%i_positive.alpha.arff" % (iteration, n))
                fd = open(gridFileNew, "w")
                fd.write(Grid.serialize(ans.grid))
                fd.close()

                writeAlphaARFF(alphaFileNew, ans.alpha)
                # -----------------------------------------------------------
            print ": %s = %g <= %g" % (optimization, measure, bestMeasure)
    print
    # -----------------------------------------------------------
    # write results to file
    statsfilename = os.path.join(pathResults,
                                 "sg_sgde_%i_%i_all.stats.arff" % (iteration, n))
    writeDataARFF({'filename': statsfilename,
                   'data': DataMatrix(np.vstack(([n] * len(accGridSizes),
                                                 accGridSizes,
                                                 accLevels,
                                                 accL2error,
                                                 accKLDivergence,
                                                 accCrossEntropy)).transpose()),
                   'names': ['sampleSize',
                             'gridSize',
                             'level',
                             'l2error',
                             'KLDivergence',
                             'crossEntropy']})
    # -----------------------------------------------------------
    statsfilename = os.path.join(pathResults,
                                 "sg_sgde_%i_%i.stats.arff" % (iteration, n))
    writeDataARFF({'filename': statsfilename,
                   'data': DataMatrix(np.vstack(([n],
                                                 bestSetting['gridSize'],
                                                 bestSetting['level'],
                                                 bestSetting['l2error'],
                                                 bestSetting['KLDivergence'],
                                                 bestSetting['crossEntropy'])).transpose()),
                   'names': ['sampleSize',
                             'gridSize',
                             'level',
                             'l2error',
                             'KLDivergence',
                             'crossEntropy']})
    # -----------------------------------------------------------
    return ans
コード例 #6
0
def estimateDensitySGDE(trainSamplesUnit,
                        testSamplesUnit=None,
                        testSamplesProb=None,
                        pathResults="/tmp",
                        dist=None,
                        optimization='l2',
                        iteration=0,
                        levels=[1, 2, 3, 4, 5],
                        refNr=0,
                        refPoints=0,
                        nSamples=1000):
    """
    Estimates a sparse grid density for different levels and refinements by
    optimizing over a given quantity.

    @param trainSamplesUnit:
    @param testSamplesUnit:
    @param testSamplesProb:
    @param pathResults:
    @param dist:
    @param optimization:
    @param iteration:
    @param levels:
    @param refNr:
    @param refPoints:
    """
    config = """
[general]
method = dmest

[files]
inFileTrain = %s
usingTrain = %s
inFileTest = %s
outFileTest = %s
usingTest = %s

[dmest]
gridFile = %s
lambda = -1 # 0.01
regType=Laplace
refNr = %i
refPoints = %i
writeGridFile = %s
writeAlphaFile = %s
samp_rejectionTrialMax = 5000
samp_numSamples = %i
samp_outFile = %s
printSurfaceFile = %s
    """

    # write the samples to file
    if len(trainSamplesUnit.shape) == 1:
        n, dim = trainSamplesUnit.shape[0], 1
        usingTrainTag = "%i" % dim
    else:
        n, dim = trainSamplesUnit.shape
        usingTrainTag = "1:%i" % dim

    trainSamplesUnitFile = os.path.join(
        pathResults, "samples_%i_%i_train.csv" % (iteration, n))
    np.savetxt(trainSamplesUnitFile, trainSamplesUnit)

    testSamplesUnitFile = ""
    usingTestTag = ""
    if testSamplesUnit is not None:
        testSamplesUnitFile = os.path.join(
            pathResults, "samples_%i_%i_test.csv" % (iteration, n))
        if dim == 1:
            usingTestTag = "%i" % dim
        else:
            usingTestTag = "1:%i" % dim
        np.savetxt(testSamplesUnitFile, testSamplesUnit)

    # collector arrays
    accGridSizes = np.array([])
    accLevels = np.array([])
    accL2error = np.array([])
    accCrossEntropy = np.array([])
    accKLDivergence = np.array([])

    # best estimation
    ans = None
    bestMeasure = 1e20
    bestSetting = None

    for level in levels:
        # define output files
        gridFile = os.path.join(
            pathResults, "samples_%i_%i_l%i.grid" % (iteration, n, level))
        alphaFile = os.path.join(
            pathResults,
            "samples_%i_%i_l%i.alpha.arff" % (iteration, n, level))
        sampleFile = os.path.join(
            pathResults, "samples_%i_%i_l%i.csv" % (iteration, n, level))
        likelihoodFile = ""
        if testSamplesUnit is not None:
            likelihoodFile = os.path.join(
                pathResults,
                "samples_%i_%i_l%i_likelihood.csv" % (iteration, n, level))

        surfaceFile = ""
        if dim == 2:
            surfaceFile = os.path.join(
                pathResults, "samples_%i_%i_l%i.xyz" % (iteration, n, level))
        gnuplotJpegFile = os.path.join(
            pathResults,
            "samples_%i_%i_l%i_gnuplot.jpg" % (iteration, n, level))
        sgdeJpegFile = os.path.join(
            pathResults, "samples_%i_%i_l%i_sgde.jpg" % (iteration, n, level))
        sgdePositiveJpegFile = os.path.join(
            pathResults,
            "samples_%i_%i_l%i_sgdePositive.jpg" % (iteration, n, level))
        configFile = os.path.join(pathResults,
                                  "sgde_%i_%i_l%i.cfg" % (iteration, n, level))
        gnuplotConfig = os.path.join(
            pathResults, "sgde_%i_%i_l%i.gnuplot" % (iteration, n, level))
        # generate the grid
        grid = Grid.createLinearBoundaryGrid(dim)
        grid.createGridGenerator().regular(level)

        if grid.getSize() <= n:
            print " l=%i" % level,
            fd = open(gridFile, "w")
            fd.write(grid.serialize())
            fd.close()

            # write config to file
            fd = open(configFile, "w")
            fd.write(config %
                     (trainSamplesUnitFile, usingTrainTag, testSamplesUnitFile,
                      likelihoodFile, usingTestTag, gridFile, refNr, refPoints,
                      gridFile, alphaFile, nSamples, sampleFile, surfaceFile))
            fd.close()

            sgdeDist = SGDEdist.byConfig(configFile)
            grid, alpha = sgdeDist.grid, sgdeDist.alpha
            # -----------------------------------------------------------
            # do some plotting
            if dim == 2:
                # gnuplot
                sgdeDist.gnuplot(gnuplotJpegFile, gnuplotConfig=gnuplotConfig)
                # -----------------------------------------------------------
                # matplotlib
                l2error = np.NAN
                kldivergence = np.NAN
                crossEntropy = sgdeDist.crossEntropy(testSamplesUnit)

                if dist is not None:
                    l2error = dist.l2error(sgdeDist, testSamplesUnit,
                                           testSamplesProb)
                    kldivergence = dist.klDivergence(sgdeDist, testSamplesUnit,
                                                     testSamplesProb)

                fig = plt.figure()
                plotSG2d(grid, alpha)
                plt.title("N=%i: vol=%g, kl=%g, log=%g, l2error=%g" %
                          (grid.getSize(), doQuadrature(grid, alpha),
                           kldivergence, crossEntropy, l2error))
                fig.savefig(sgdeJpegFile)
                plt.close(fig)
                # -----------------------------------------------------------
            # copy grid and coefficients
            gridFileNew = os.path.join(
                pathResults, "samples_%i_%i_sgde.grid" % (iteration, n))
            alphaFileNew = os.path.join(
                pathResults, "samples_%i_%i_sgde.alpha.arff" % (iteration, n))
            sampleFileNew = os.path.join(
                pathResults, "samples_%i_%i_sgde.csv" % (iteration, n))

            copy2(gridFile, gridFileNew)
            copy2(alphaFile, alphaFileNew)
            copy2(sampleFile, sampleFileNew)
            # -----------------------------------------------------------
            #             # make it positive and do all over again
            #             opPositive = OperationMakePositive(sgdeDist.grid)
            #             alg = EstimateDensityAlgorithm(configFile)
            #             opPositive.setInterpolationAlgorithm(alg)
            #             grid, alpha = opPositive.makePositive(sgdeDist.alpha)

            # scale to unit integrand
            alpha.mult(1. /
                       createOperationQuadrature(grid).doQuadrature(alpha))

            sgdeDist.grid = grid
            sgdeDist.alpha = alpha

            gridFileNew = os.path.join(
                pathResults,
                "samples_%i_%i_l%i_positive.grid" % (iteration, n, level))
            alphaFileNew = os.path.join(
                pathResults, "samples_%i_%i_l%i_positive.alpha.arff" %
                (iteration, n, level))
            fd = open(gridFileNew, "w")
            fd.write(Grid.serialize(grid))
            fd.close()

            writeAlphaARFF(alphaFileNew, alpha)
            # -----------------------------------------------------------
            # collect statistics
            accGridSizes = np.append(accGridSizes, grid.getSize())
            accLevels = np.append(accLevels, level)

            l2error = np.NAN
            kldivergence = np.NAN
            crossEntropy = sgdeDist.crossEntropy(testSamplesUnit)

            if dist is not None:
                l2error = dist.l2error(sgdeDist, testSamplesUnit,
                                       testSamplesProb)
                kldivergence = dist.klDivergence(sgdeDist, testSamplesUnit,
                                                 testSamplesProb)

            accL2error = np.append(accL2error, l2error)
            accCrossEntropy = np.append(accCrossEntropy, crossEntropy)
            accKLDivergence = np.append(accKLDivergence, kldivergence)
            if dim == 2:
                # -----------------------------------------------------------
                # do some plotting
                fig = plt.figure()
                plotSG2d(grid, alpha)
                plt.title("N=%i: vol=%g, kl=%g, log=%g, l2error=%g" %
                          (grid.getSize(), doQuadrature(grid, alpha),
                           kldivergence, crossEntropy, l2error))
                fig.savefig(sgdePositiveJpegFile)
                plt.close(fig)
                # -----------------------------------------------------------
            # select the best density available based on the given criterion
            if optimization == 'crossEntropy':
                measure = crossEntropy
            elif optimization == 'kldivergence':
                measure = kldivergence
            elif optimization == 'l2':
                measure = l2error
            else:
                raise AttributeError(
                    'optimization "%s" is not known for density estimation' %
                    optimization)

            isBest = measure < bestMeasure
            if isBest:
                bestMeasure = measure

            if ans is None or isBest:
                ans = sgdeDist
                bestSetting = {
                    'level': level,
                    'gridSize': grid.getSize(),
                    'l2error': l2error,
                    'KLDivergence': kldivergence,
                    'crossEntropy': crossEntropy
                }

                # -----------------------------------------------------------
                # copy grid and coefficients
                gridFileNew = os.path.join(
                    pathResults, "samples_%i_%i.grid" % (iteration, n))
                alphaFileNew = os.path.join(
                    pathResults, "samples_%i_%i.alpha.arff" % (iteration, n))
                sampleFileNew = os.path.join(
                    pathResults, "samples_%i_%i.csv" % (iteration, n))
                copy2(gridFile, gridFileNew)
                copy2(alphaFile, alphaFileNew)
                copy2(sampleFile, sampleFileNew)

                gridFileNew = os.path.join(
                    pathResults,
                    "samples_%i_%i_positive.grid" % (iteration, n))
                alphaFileNew = os.path.join(
                    pathResults,
                    "samples_%i_%i_positive.alpha.arff" % (iteration, n))
                fd = open(gridFileNew, "w")
                fd.write(Grid.serialize(ans.grid))
                fd.close()

                writeAlphaARFF(alphaFileNew, ans.alpha)
                # -----------------------------------------------------------
            print ": %s = %g <= %g" % (optimization, measure, bestMeasure)
    print
    # -----------------------------------------------------------
    # write results to file
    statsfilename = os.path.join(
        pathResults, "sg_sgde_%i_%i_all.stats.arff" % (iteration, n))
    writeDataARFF({
        'filename':
        statsfilename,
        'data':
        DataMatrix(
            np.vstack(
                ([n] * len(accGridSizes), accGridSizes, accLevels, accL2error,
                 accKLDivergence, accCrossEntropy)).transpose()),
        'names': [
            'sampleSize', 'gridSize', 'level', 'l2error', 'KLDivergence',
            'crossEntropy'
        ]
    })
    # -----------------------------------------------------------
    statsfilename = os.path.join(pathResults,
                                 "sg_sgde_%i_%i.stats.arff" % (iteration, n))
    writeDataARFF({
        'filename':
        statsfilename,
        'data':
        DataMatrix(
            np.vstack(([n], bestSetting['gridSize'], bestSetting['level'],
                       bestSetting['l2error'], bestSetting['KLDivergence'],
                       bestSetting['crossEntropy'])).transpose()),
        'names': [
            'sampleSize', 'gridSize', 'level', 'l2error', 'KLDivergence',
            'crossEntropy'
        ]
    })
    # -----------------------------------------------------------
    return ans
コード例 #7
0
    def estimate(self, vol, grid, alpha, f, U, T):
        r"""
        Extraction of the expectation the given sparse grid function
        interpolating the product of function value and pdf.

        \int\limits_{[0, 1]^d} f(x) * pdf(x) dx
        """
        # extract correct pdf for moment estimation
        vol, W = self.__extractPDFforMomentEstimation(U, T)

        # check if there are just uniform distributions given
        if all([isinstance(dist, Uniform) for dist in W.getDistributions()]):
            # for uniformly distributed RVS holds: vol * pdf(x) = 1
            vol = 1
            u = f
        else:
            # interpolate u(x) = f_N^k(x) * pdf(x)
            def u(p, val):
                """
                function to be interpolated
                @param p: coordinates of collocation nodes
                @param val: sparse grid function value at position p
                """
                q = W.pdf(T.unitToProbabilistic(p), marginal=True)
                return f(p, val) * np.prod(q)

        # discretize the function f on a sparse grid
#         pdf_grid, pdf_alpha, pdf_err = U.discretize()
#         n_grid, n_alpha, m_err = discretizeProduct(f,
#                                                    grid, alpha,
#                                                    pdf_grid, pdf_alpha,
#                                                    refnums=self.__refnums,
#                                                    epsilon=self.__epsilon)

        n_grid, n_alpha, err = discretize(grid, alpha, u,
                                          refnums=self.__refnums,
                                          pointsNum=self.__pointsNum,
                                          epsilon=self.__epsilon,
                                          level=self.level,
                                          deg=self.__deg)

        moment = vol * doQuadrature(n_grid, n_alpha)

        if abs(moment) > 1e20:
            print moment
            print n_grid.getSize(), len(alpha)
            import pdb; pdb.set_trace()

#         print "-" * 60
#         print evalSGFunction(m_grid, m_alpha, DataVector([0.5, 0.5])), u([0.5, 0.5], None)
#         print evalSGFunction(n_grid, n_alpha, DataVector([0.5, 0.5])), u([0.5, 0.5], None)
#         print "-" * 60
#
#         # do the quadrature on the new grid
#         m_moment = vol * doQuadrature(m_grid, m_alpha)
#
#         print m_moment
#         print n_moment
#
#         import pdb; pdb.set_trace()
        return moment, err[1]
コード例 #8
0
def computeBF(grid, U, admissibleSet):
    """
    Compute bilinear form
    (A)_ij = \int phi_i phi_j dU(x)
    on measure U, which is in this case supposed to be a lebesgue measure.
    @param grid: Grid, sparse grid
    @param U: list of distributions, Lebeasgue measure
    @param admissibleSet: AdmissibleSet
    @return: DataMatrix
    """
    gs = grid.getStorage()
    basis = getBasis(grid)
    # interpolate phi_i phi_j on sparse grid with piecewise polynomial SG
    # the product of two piecewise linear functions is a piecewise
    # polynomial one of degree 2.
    ngrid = Grid.createPolyBoundaryGrid(1, 2)
    ngrid.getGenerator().regular(2)
    ngs = ngrid.getStorage()
    nodalValues = DataVector(ngs.size())

    A = DataMatrix(admissibleSet.getSize(), gs.size())
    b = DataVector(admissibleSet.getSize())
    s = np.ndarray(gs.getDimension(), dtype='float')

#     # pre compute basis evaluations
#     basis_eval = {}
#     for li in xrange(1, gs.getMaxLevel() + 1):
#         for i in xrange(1, 2 ** li + 1, 2):
#             # add value with it self
#             x = 2 ** -li * i
#             basis_eval[(li, i, li, i, x)] = basis.eval(li, i, x) * \
#                 basis.eval(li, i, x)
#
#             # left side
#             x = 2 ** -(li + 1) * (2 * i - 1)
#             basis_eval[(li, i, li, i, x)] = basis.eval(li, i, x) * \
#                 basis.eval(li, i, x)
#             # right side
#             x = 2 ** -(li + 1) * (2 * i + 1)
#             basis_eval[(li, i, li, i, x)] = basis.eval(li, i, x) * \
#                 basis.eval(li, i, x)
#
#             # add values for hierarchical lower nodes
#             for lj in xrange(li + 1, gs.getMaxLevel() + 1):
#                 a = 2 ** (lj - li)
#                 j = a * i - a + 1
#                 while j < a * i + a:
#                     # center
#                     x = 2 ** -lj * j
#                     basis_eval[(li, i, lj, j, x)] = basis.eval(li, i, x) * \
#                         basis.eval(lj, j, x)
#                     basis_eval[(lj, j, li, i, x)] = basis_eval[(li, i, lj, j, x)]
#                     # left side
#                     x = 2 ** -(lj + 1) * (2 * j - 1)
#                     basis_eval[(li, i, lj, j, x)] = basis.eval(li, i, x) * \
#                         basis.eval(lj, j, x)
#                     basis_eval[(lj, j, li, i, x)] = basis_eval[(li, i, lj, j, x)]
#                     # right side
#                     x = 2 ** -(lj + 1) * (2 * j + 1)
#                     basis_eval[(li, i, lj, j, x)] = basis.eval(li, i, x) * \
#                         basis.eval(lj, j, x)
#                     basis_eval[(lj, j, li, i, x)] = basis_eval[(li, i, lj, j, x)]
#                     j += 2
#
#     print len(basis_eval)

    # run over all rows
    for i, gpi in enumerate(admissibleSet.values()):
        # run over all columns
        for j in range(gs.size()):
            # print "%i/%i" % (i * gs.size() + j + 1, gs.size() ** 2)
            gpj = gs.getPoint(j)
            for d in range(gs.getDimension()):
                # get level index
                lid, iid = gpi.getLevel(d), gpi.getIndex(d)
                ljd, ijd = gpj.getLevel(d), gpj.getIndex(d)

                # compute left and right boundary of the support of both
                # basis functions
                lb = max([(iid - 1) * 2 ** -lid, (ijd - 1) * 2 ** -ljd])
                ub = min([(iid + 1) * 2 ** -lid, (ijd + 1) * 2 ** -ljd])

                # same level, different index
                if lid == ljd and iid != ijd:
                    s[d] = 0.
                # the support does not overlap
                elif lid != ljd and lb >= ub:
                    s[d] = 0.
                else:
                    # ----------------------------------------------------
                    # do the 1d interpolation ...
                    # define transformation function
                    T = LinearTransformation(lb, ub)
                    for k in range(ngs.size()):
                        x = ngs.getCoordinate(ngs.getPoint(k), 0)
                        x = T.unitToProbabilistic(x)
                        nodalValues[k] = basis.eval(lid, iid, x) * \
                            basis.eval(ljd, ijd, x)
                    # ... by hierarchization
                    v = hierarchize(ngrid, nodalValues)

                    # discretize the following function
                    def f(x, y):
                        xp = T.unitToProbabilistic(x)
                        return float(y * U[d].pdf(xp))

                    # sparse grid quadrature
                    g, w, _ = discretize(ngrid, v, f, refnums=0, level=5,
                                         useDiscreteL2Error=False)
                    s[d] = doQuadrature(g, w) * (ub - lb)
#                     fig = plt.figure()
#                     plotSG1d(ngrid, v)
#                     x = np.linspace(xlow, ub, 100)
#                     plt.plot(np.linspace(0, 1, 100), U[d].pdf(x))
#                     fig.show()
#                     fig = plt.figure()
#                     plotSG1d(g, w)
#                     x = np.linspace(0, 1, 100)
#                     plt.plot(x,
#                              [evalSGFunction(ngrid, v, DataVector([xi])) * U[d].pdf(T.unitToProbabilistic(xi)) for xi in x])
#                     fig.show()
#                     plt.show()
                    # compute the integral of it
                    # ----------------------------------------------------
            A.set(i, j, float(np.prod(s)))
            if gs.getSequenceNumber(gpi) == j:
                b[i] = A.get(i, j)
    return A, b
コード例 #9
0
def computeBF(grid, U, admissibleSet):
    """
    Compute bilinear form
    (A)_ij = \int phi_i phi_j dU(x)
    on measure U, which is in this case supposed to be a lebesgue measure.
    @param grid: Grid, sparse grid
    @param U: list of distributions, Lebeasgue measure
    @param admissibleSet: AdmissibleSet
    @return: DataMatrix
    """
    gs = grid.getStorage()
    basis = getBasis(grid)
    # interpolate phi_i phi_j on sparse grid with piecewise polynomial SG
    # the product of two piecewise linear functions is a piecewise
    # polynomial one of degree 2.
    ngrid = Grid.createPolyBoundaryGrid(1, 2)
    ngrid.createGridGenerator().regular(2)
    ngs = ngrid.getStorage()
    nodalValues = DataVector(ngs.size())

    A = DataMatrix(admissibleSet.getSize(), gs.size())
    b = DataVector(admissibleSet.getSize())
    s = np.ndarray(gs.dim(), dtype='float')

#     # pre compute basis evaluations
#     basis_eval = {}
#     for li in xrange(1, gs.getMaxLevel() + 1):
#         for i in xrange(1, 2 ** li + 1, 2):
#             # add value with it self
#             x = 2 ** -li * i
#             basis_eval[(li, i, li, i, x)] = basis.eval(li, i, x) * \
#                 basis.eval(li, i, x)
#
#             # left side
#             x = 2 ** -(li + 1) * (2 * i - 1)
#             basis_eval[(li, i, li, i, x)] = basis.eval(li, i, x) * \
#                 basis.eval(li, i, x)
#             # right side
#             x = 2 ** -(li + 1) * (2 * i + 1)
#             basis_eval[(li, i, li, i, x)] = basis.eval(li, i, x) * \
#                 basis.eval(li, i, x)
#
#             # add values for hierarchical lower nodes
#             for lj in xrange(li + 1, gs.getMaxLevel() + 1):
#                 a = 2 ** (lj - li)
#                 j = a * i - a + 1
#                 while j < a * i + a:
#                     # center
#                     x = 2 ** -lj * j
#                     basis_eval[(li, i, lj, j, x)] = basis.eval(li, i, x) * \
#                         basis.eval(lj, j, x)
#                     basis_eval[(lj, j, li, i, x)] = basis_eval[(li, i, lj, j, x)]
#                     # left side
#                     x = 2 ** -(lj + 1) * (2 * j - 1)
#                     basis_eval[(li, i, lj, j, x)] = basis.eval(li, i, x) * \
#                         basis.eval(lj, j, x)
#                     basis_eval[(lj, j, li, i, x)] = basis_eval[(li, i, lj, j, x)]
#                     # right side
#                     x = 2 ** -(lj + 1) * (2 * j + 1)
#                     basis_eval[(li, i, lj, j, x)] = basis.eval(li, i, x) * \
#                         basis.eval(lj, j, x)
#                     basis_eval[(lj, j, li, i, x)] = basis_eval[(li, i, lj, j, x)]
#                     j += 2
#
#     print len(basis_eval)

    # run over all rows
    for i, gpi in enumerate(admissibleSet.values()):
        # run over all columns
        for j in xrange(gs.size()):
            # print "%i/%i" % (i * gs.size() + j + 1, gs.size() ** 2)
            gpj = gs.get(j)
            for d in xrange(gs.dim()):
                # get level index
                lid, iid = gpi.getLevel(d), gpi.getIndex(d)
                ljd, ijd = gpj.getLevel(d), gpj.getIndex(d)

                # compute left and right boundary of the support of both
                # basis functions
                lb = max([(iid - 1) * 2 ** -lid, (ijd - 1) * 2 ** -ljd])
                ub = min([(iid + 1) * 2 ** -lid, (ijd + 1) * 2 ** -ljd])

                # same level, different index
                if lid == ljd and iid != ijd:
                    s[d] = 0.
                # the support does not overlap
                elif lid != ljd and lb >= ub:
                    s[d] = 0.
                else:
                    # ----------------------------------------------------
                    # do the 1d interpolation ...
                    # define transformation function
                    T = LinearTransformation(lb, ub)
                    for k in xrange(ngs.size()):
                        x = ngs.get(k).getCoord(0)
                        x = T.unitToProbabilistic(x)
                        nodalValues[k] = basis.eval(lid, iid, x) * \
                            basis.eval(ljd, ijd, x)
                    # ... by hierarchization
                    v = hierarchize(ngrid, nodalValues)

                    # discretize the following function
                    def f(x, y):
                        xp = T.unitToProbabilistic(x)
                        return float(y * U[d].pdf(xp))

                    # sparse grid quadrature
                    g, w, _ = discretize(ngrid, v, f, refnums=0, level=5,
                                         useDiscreteL2Error=False)
                    s[d] = doQuadrature(g, w) * (ub - lb)
#                     fig = plt.figure()
#                     plotSG1d(ngrid, v)
#                     x = np.linspace(xlow, ub, 100)
#                     plt.plot(np.linspace(0, 1, 100), U[d].pdf(x))
#                     fig.show()
#                     fig = plt.figure()
#                     plotSG1d(g, w)
#                     x = np.linspace(0, 1, 100)
#                     plt.plot(x,
#                              [evalSGFunction(ngrid, v, DataVector([xi])) * U[d].pdf(T.unitToProbabilistic(xi)) for xi in x])
#                     fig.show()
#                     plt.show()
                    # compute the integral of it
                    # ----------------------------------------------------
            A.set(i, j, float(np.prod(s)))
            if gs.seq(gpi) == j:
                b[i] = A.get(i, j)
    return A, b