コード例 #1
0
ファイル: test_kraichnanOrszag.py プロジェクト: pfluegdk/SGpp
    def computeReferenceValues(self, uqSetting, n=2000):
        # ----------------------------------------------------------
        # dicretize the stochastic space with Monte Carlo
        # ----------------------------------------------------------
        if uqSetting.getSize() < n:
            print("-" * 60)
            print("Latin Hypercube sampling")
            print("-" * 60)
            mcSampler = MCSampler.withLatinHypercubeSampleGenerator(self.params, n - uqSetting.getSize())
            while uqSetting.getSize() < n:
                samples = mcSampler.nextSamples(n - uqSetting.getSize())
                uqSetting.runSamples(samples)
            uqSetting.writeToFile()

        def f(y, t):
            return [fi(y, t) for fi in self.f]

        self.y0 = [1., .5, 0.]
        self.n = ((self.tn - self.t0) / self.dt) + 1
        self.t = np.linspace(self.t0, self.tn, self.n, endpoint=True)

        # solve the ODEs
        soln = odeint(f, self.y0, self.t)
        self.y1 = soln[:, 0]
        self.y2 = soln[:, 1]
        self.y3 = soln[:, 2]
コード例 #2
0
ファイル: test_kraichnanOrszag.py プロジェクト: pfluegdk/SGpp
    def run_mc(self, N=10, out=False, plot=False):
        # ----------------------------------------------------------
        # dicretize the stochastic space with Monte Carlo
        # ----------------------------------------------------------
        np.random.seed(1234567)

        print("-" * 60)
        print("Latin Hypercube Sampling")
        print("-" * 60)
        mcSampler = MCSampler.withLatinHypercubeSampleGenerator(self.params, N)
        mcUQSettingBuilder = UQBuilder()
        self.defineUQSetting(mcUQSettingBuilder)
        mcUQSetting = mcUQSettingBuilder.andGetResult()

        # ----------------------------------------------------------
        # Monte Carlo Estimator
        # ----------------------------------------------------------
        samples = mcSampler.nextSamples(N)
        mcUQSetting.runSamples(samples)
        samples = mcUQSetting.getTimeDependentResults(self.toi, qoi=self.qoi)

        # split the results into chunk of Ni samples
        num_samples = len(next(iter(samples.values())))
        analysis = MCAnalysis(self.params, samples)
        analysis.setVerbose(False)

        stats = {"num_model_evaluations": num_samples,
                 "mean_estimated": analysis.mean(),
                 "var_estimated": analysis.var()}

        if out:
            # store results
            filename = os.path.join(self.pathResults,
                                    "%s-qoi%s_%s.pkl" % (self.radix,
                                                         self.qoi,
                                                         "mc"))
            fd = open(filename, "w")
            pkl.dump({'surrogate': 'mc',
                      'num_dims': self.numDims,
                      'sampling_strategy': "latin_hypercube",
                      'num_model_evaluations': num_samples,
                      'time_steps': self.toi,
                      'setting': self.setting,
                      'qoi': self.qoi,
                      'results': stats},
                     fd)
            fd.close()
コード例 #3
0
ファイル: test_params.py プロジェクト: pfluegdk/SGpp
    def testSettings(self):
        builder = ParameterBuilder()
        dp = builder.defineDeterministicParameters()
        up = builder.defineUncertainParameters()

        # ============================================
        # 1)
        up.new().isCalled('v')\
                .withDistribution(Uniform(0, 1))\
                .withRosenblattTransformation()
        # --------------------------------------------
        # 2)
        up.new().isCalled('density')\
                .withDistribution(Uniform(-1, 1))\
                .hasValue(0.0)
        # --------------------------------------------
        # 3)
        up.new().isCalled('K')\
                .withDistribution(TNormal(0, 1, -3, 2))\
                .hasValue(-3)
        # --------------------------------------------
        # 4)
        up.new().isCalled('theta')\
                .withDistribution(TNormal(0, 1, -2, 2))\
                .withLinearTransformation()
        # --------------------------------------------
        # 5)
        up.new().isCalled('blub')\
                .withUniformDistribution(-1, 1)
        # --------------------------------------------
        # 6)
        dp.new().isCalled('radius').hasValue(2)
        # ============================================

        params = builder.andGetResult()

        # test dimensions
        assert params.getDim() == 6
        assert params.getStochasticDim() == 3
        assert len(params.activeParams()) == 3
        assert params.getStochasticDim() == len(params.activeParams())
        assert params.getDim() - len(params.uncertainParams()) == \
            len(params.deterministicParams())
        assert params.getStochasticDim() == len(params.getDistributions()) - 2

        jsonStr = params.getJointTransformation().toJson()
        jsonObject = json.loads(jsonStr)
        trans = Transformation.fromJson(jsonObject)

        # test transformations
        ap = params.activeParams()
        assert params.getStochasticDim() == len(ap)
        sampler = MCSampler.withNaiveSampleGenerator(params)

        for sample in sampler.nextSamples(100):
            for x in sample.getActiveUnit():
                assert 0 <= x <= 1
            bounds = params.getBounds()
            q = sample.getExpandedProbabilistic()
            for xlim1, xlim2, x in np.vstack((bounds.T, q)).T:
                assert xlim1 <= x <= xlim2

        params.removeParam(0)
        assert params.getStochasticDim() == len(ap) - 1
        sampler = MCSampler.withNaiveSampleGenerator(params)

        for sample in sampler.nextSamples(100):
            for x in sample.getActiveUnit():
                assert 0 <= x <= 1
            bounds = params.getBounds()
            q = sample.getExpandedProbabilistic()
            for xlim1, xlim2, x in np.vstack((bounds.T, q)).T:
                assert xlim1 <= x <= xlim2