コード例 #1
0
def valid_remainder(cntxt: Context, n: Node, matchables: RDFGraph,
                    S: ShExJ.Shape) -> bool:
    """
    Let **outs** be the arcsOut in remainder: `outs = remainder ∩ arcsOut(G, n)`.

    Let **matchables** be the triples in outs whose predicate appears in a TripleConstraint in `expression`. If
    `expression` is absent, matchables = Ø (the empty set).

    * There is no triple in **matchables** which matches a TripleConstraint in expression

    * There is no triple in **matchables** whose predicate does not appear in extra.

    * closed is false or unmatchables is empty

    :param cntxt: evaluation context
    :param n: focus node
    :param matchables: non-matched triples
    :param S: Shape being evaluated
    :return: True if remainder is valid
    """
    # TODO: Update this and satisfies to address the new algorithm
    # Let **outs** be the arcsOut in remainder: `outs = remainder ∩ arcsOut(G, n)`.
    outs = arcsOut(cntxt.graph, n).intersection(matchables)

    # predicates that in a TripleConstraint in `expression`
    predicates = predicates_in_expression(S, cntxt)

    # Let **matchables** be the triples in outs whose predicate appears in predicates. If
    # `expression` is absent, matchables = Ø (the empty set).
    matchables = RDFGraph(t for t in outs if str(t.p) in predicates)

    # There is no triple in **matchables** which matches a TripleConstraint in expression
    if matchables and S.expression is not None:
        tes = triple_constraints_in_expression(S.expression, cntxt)
        for m in matchables:
            if any(matchesTripleConstraint(cntxt, m, te) for te in tes):
                return False

    # There is no triple in **matchables** whose predicate does not appear in extra.
    extras = {iriref_to_uriref(e)
              for e in S.extra} if S.extra is not None else {}
    if any(t.p not in extras for t in matchables):
        return False

    # closed is false or unmatchables is empty.
    return not S.closed.val or not bool(outs - matchables)
コード例 #2
0
def satisfiesShape(cntxt: Context, n: Node, S: ShExJ.Shape,
                   c: DebugContext) -> bool:
    """ `5.5.2 Semantics <http://shex.io/shex-semantics/#triple-expressions-semantics>`_

    For a node `n`, shape `S`, graph `G`, and shapeMap `m`, `satisfies(n, S, G, m)` if and only if:

    * `neigh(G, n)` can be partitioned into two sets matched and remainder such that
      `matches(matched, expression, m)`. If expression is absent, remainder = `neigh(G, n)`.

    :param n: focus node
    :param S: Shape to be satisfied
    :param cntxt: Evaluation context
    :param c: Debug context
    :return: true iff `satisfies(n, S, cntxt)`
    """

    # Recursion detection.  If start_evaluating returns a boolean value, this is the assumed result of the shape
    # evaluation.  If it returns None, then an initial evaluation is needed
    rslt = cntxt.start_evaluating(n, S)

    if rslt is None:
        cntxt.evaluate_stack.append((n, S.id))
        predicates = directed_predicates_in_expression(S, cntxt)
        matchables = RDFGraph()

        # Note: The code below does an "over-slurp" for the sake of expediency.  If you are interested in
        #       getting EXACTLY the needed triples, set cntxt.over_slurp to false
        if isinstance(cntxt.graph, SlurpyGraph) and cntxt.over_slurp:
            with slurper(cntxt, n, S) as g:
                _ = g.triples((n, None, None))

        for predicate, direction in predicates.items():
            with slurper(cntxt, n, S) as g:
                matchables.add_triples(
                    g.triples((n if direction.is_fwd else None,
                               iriref_to_uriref(predicate),
                               n if direction.is_rev else None)))

        if c.debug:
            print(
                c.i(1, "predicates:",
                    sorted(cntxt.n3_mapper.n3(p) for p in predicates.keys())))
            print(
                c.i(1, "matchables:",
                    sorted(cntxt.n3_mapper.n3(m) for m in matchables)))
            print()

        if S.closed:
            # TODO: Is this working correctly on reverse items?
            non_matchables = RDFGraph(
                [t for t in arcsOut(cntxt.graph, n) if t not in matchables])
            if len(non_matchables):
                cntxt.fail_reason = "Unmatched triples in CLOSED shape:"
                cntxt.fail_reason = '\n'.join("\t" + t for t in non_matchables)
                if c.debug:
                    print(
                        c.i(
                            0, "<--- Satisfies shape " + c.d() + " FAIL - ",
                            len(non_matchables) +
                            " non-matching triples on a closed shape"))
                    print(c.i(1, "", list(non_matchables)))
                    print()
                return False

        # Evaluate the actual expression.  Start assuming everything matches...
        if S.expression:
            if matches(cntxt, matchables, S.expression):
                rslt = True
            else:
                extras = {iriref_to_uriref(e)
                          for e in S.extra} if S.extra is not None else {}
                if len(extras):
                    permutable_matchables = RDFGraph(
                        [t for t in matchables if t.p in extras])
                    non_permutable_matchables = RDFGraph([
                        t for t in matchables if t not in permutable_matchables
                    ])
                    if c.debug:
                        print(
                            c.i(1,
                                "Complete match failed -- evaluating extras",
                                list(extras)))
                    for matched, remainder in partition_2(
                            permutable_matchables):
                        permutation = non_permutable_matchables.union(matched)
                        if matches(cntxt, permutation, S.expression):
                            rslt = True
                            break
                rslt = rslt or False
        else:
            rslt = True  # Empty shape

        # If an assumption was made and the result doesn't match the assumption, switch directions and try again
        done, consistent = cntxt.done_evaluating(n, S, rslt)
        if not done:
            rslt = satisfiesShape(cntxt, n, S)
        rslt = rslt and consistent

        cntxt.evaluate_stack.pop()
    return rslt