def __init__( self, threshold=0.1, nu=1.0, tol=1e-5, thresholder="l0", max_iter=30, normalize=False, fit_intercept=False, copy_X=True, ): super(SR3, self).__init__( max_iter=max_iter, normalize=normalize, fit_intercept=fit_intercept, copy_X=copy_X, ) if threshold < 0: raise ValueError("threshold cannot be negative") if nu <= 0: raise ValueError("nu must be positive") if tol <= 0: raise ValueError("tol must be positive") self.threshold = threshold self.nu = nu self.tol = tol self.thresholder = thresholder self.prox = get_prox(thresholder)
def __init__( self, threshold=0.1, nu=1.0, tol=1e-5, thresholder="l0", max_iter=30, trimming_fraction=0.0, trimming_initialization=None, trimming_step_size=1.0, constraint_lhs=None, constraint_rhs=None, normalize=False, fit_intercept=False, copy_X=True, ): super(SR3Enhanced, self).__init__( max_iter=max_iter, normalize=normalize, fit_intercept=fit_intercept, copy_X=copy_X, ) if threshold < 0: raise ValueError("threshold cannot be negative") if nu <= 0: raise ValueError("nu must be positive") if tol <= 0: raise ValueError("tol must be positive") self.threshold = threshold self.nu = nu self.tol = tol self.thresholder = thresholder self.prox = get_prox(thresholder) self.reg = get_reg(thresholder) if trimming_fraction == 0.0: self.use_trimming = False else: self.use_trimming = True self.trimming_fraction = trimming_fraction self.trimming_initialization = trimming_initialization self.trimming_step_size = trimming_step_size self.use_constraints = (constraint_lhs is not None) and (constraint_rhs is not None) if self.use_constraints: self.n_constraints = constraint_lhs.shape[0] self.constraint_lhs = constraint_lhs self.constraint_rhs = constraint_rhs
def __init__( self, threshold=0.1, nu=1.0, tol=1e-5, thresholder="l0", trimming_fraction=0.0, trimming_step_size=1.0, max_iter=30, normalize=False, fit_intercept=False, copy_X=True, ): super(SR3, self).__init__( max_iter=max_iter, normalize=normalize, fit_intercept=fit_intercept, copy_X=copy_X, ) if threshold < 0: raise ValueError("threshold cannot be negative") if nu <= 0: raise ValueError("nu must be positive") if tol <= 0: raise ValueError("tol must be positive") if (trimming_fraction < 0) or (trimming_fraction > 1): raise ValueError("trimming fraction must be between 0 and 1") self.threshold = threshold self.nu = nu self.tol = tol self.thresholder = thresholder self.prox = get_prox(thresholder) if trimming_fraction == 0.0: self.use_trimming = False else: self.use_trimming = True self.trimming_fraction = trimming_fraction self.trimming_step_size = trimming_step_size
def __init__( self, n_forcing_params, forcing_functions, threshold=0.1, nu=1.0, tol=1e-5, thresholder="l0", max_iter=30, normalize=False, fit_intercept=False, copy_X=True, ): super(SR3Forcing, self).__init__( max_iter=max_iter, normalize=normalize, fit_intercept=fit_intercept, copy_X=copy_X, ) if threshold < 0: raise ValueError("threshold cannot be negative") if nu <= 0: raise ValueError("nu must be positive") if tol <= 0: raise ValueError("tol must be positive") self.threshold = threshold self.nu = nu self.tol = tol self.thresholder = thresholder self.prox = get_prox(thresholder) self.reg = get_reg(thresholder) self.n_forcing_params = n_forcing_params self.forcing_params_ = None self.forcing_functions = forcing_functions