コード例 #1
0
ファイル: sitype.py プロジェクト: shendric/pysiral
    def _get_sitype_track(self, l2):
        """
        Extract ice type and ice type uncertainty along the track
        :param l2:
        :return: sitype (array), sitype_uncertainty (array)
        """

        # --- Extract sea ice type and its uncertainty along the trajectory ---
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.lon, self._data.lat
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude, grid_lons, grid_lats, griddef)
        sitype = grid2track.get_from_grid_variable(self._data.ice_type[0, :, :], flipud=True)
        uncertainty = grid2track.get_from_grid_variable(self._data.uncertainty[0, :, :], flipud=True)

        # --- Translate the flags in the file into MYI-fractions ---
        # The fill value of the sea ice type as changed for different product version
        # To assure backwards compatibility the fill value defaults to -1 (sea ice type v1p0)
        # an for newer versions it must be specified in the options
        fill_value = self.cfg.options.get("fill_value", -1)
        fillvalue_locations = np.where(sitype == fill_value)[0]
        sitype[fillvalue_locations] = 5
        sitype = np.array([*map(self.flag_translator, sitype)])

        # --- Ensure uncertainty units are fractions and not percent ---
        # In the sea-ice type cdr/icdr v1.0 the unit of uncertainty in percent
        # while from v2.0 on the unit is fraction. Therefore a switch has been
        # introduced for v2.0 that turn the unit conversion (default) off
        uncertainty_unit_is_percent = self.cfg.options.get("uncertainty_unit_is_percent", True)
        if uncertainty_unit_is_percent:
            uncertainty = uncertainty / 100.

        # All done, return values
        return sitype, uncertainty
コード例 #2
0
ファイル: sitype.py プロジェクト: shendric/pysiral
    def _get_sitype_track(self, l2):

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.lon, self._data.lat
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude, grid_lons, grid_lats, griddef)
        sitype = grid2track.get_from_grid_variable(self._data.ice_type[0, :, :], flipud=True)

        # set fill values to flag 0 -> nan
        fillvalues = np.where(sitype == -1)[0]
        sitype[fillvalues] = 0

        # --- Translate sea-ice type codes into myi fraction ---
        # flag_meanings: -1: fill value, 1: open_water, 2: first_year_ice, 3: multi_year_ice, 4: ambiguous
        translator = np.array([np.nan, np.nan, 0.0, 1.0, 0.5])
        sitype = np.array([translator[value] for value in sitype])

        # --- Get Uncertainty ---

        # NOTE: There has been a change in OSI-403-d, when the `confidence_level`
        #       variable was replaced by uncertainty.
        try:
            # Translate confidence level into myi fraction uncertainty
            # flag_meaning: 0: unprocessed, 1: erroneous, 2: unreliable, 3: acceptable, 4: good, 5: excellent
            confidence_level = grid2track.get_from_grid_variable(self._data.confidence_level[0, :, :], flipud=True)
            translator = np.array([np.nan, 1., 0.5, 0.2, 0.1, 0.0])
            sitype_uncertainty = np.array([translator[value] for value in confidence_level])
        except AttributeError:
            sitype_uncertainty = grid2track.get_from_grid_variable(self._data.uncertainty[0, :, :], flipud=True)

        return sitype, sitype_uncertainty
コード例 #3
0
    def _get_sic_track(self, l2):
        """ Simple extraction along trajectory"""

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.lon, self._data.lat
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude, grid_lons, grid_lats, griddef)
        sic = grid2track.get_from_grid_variable(self._data.ice_conc, flipud=True)

        return sic
コード例 #4
0
ファイル: region.py プロジェクト: helianglen/pysiral
    def get_l2_track_vars(self, l2):

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.longitude, self._data.latitude
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude,
                                       grid_lons, grid_lats, griddef)
        region_code = grid2track.get_from_grid_variable(self._data.region_id,
                                                        flipud=False)

        # Register the variable
        self.register_auxvar("reg_code", "region_code", region_code, None)
コード例 #5
0
ファイル: sic.py プロジェクト: shendric/pysiral
    def _get_sic_track(self, l2: "Level2Data") -> np.ndarray:
        """
        Simple extraction along trajectory
        :param l2:
        :return: sea ice concentration array
        """

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.lon, self._data.lat
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude, grid_lons, grid_lats, griddef)
        sic = grid2track.get_from_grid_variable(self._data.ice_conc, flipud=True)

        return sic
コード例 #6
0
    def get_l2_track_vars(self, l2):
        """
        API method to map gridded region id on the trajectory
        :param l2:
        :return:
        """

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self.nc.longitude.values, self.nc.latitude.values
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude,
                                       grid_lons, grid_lats, griddef)
        region_code = grid2track.get_from_grid_variable(
            self.nc.region_id.values, flipud=False)

        # Register the variable
        self.register_auxvar("reg_code", "region_code", region_code, None)
コード例 #7
0
ファイル: snow.py プロジェクト: shendric/pysiral
    def _get_snow_track(self, l2):
        """
        Extract the snow depth and density track along the l2 track
        :param l2:
        :return:
        """

        # Extract track data from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.get_lonlat()
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude,
                                       grid_lons, grid_lats, griddef)

        # Extract data (Map the extracted tracks directly on the snow parameter container)
        var_map = self.cfg.options.variable_map
        snow = SnowParameterContainer()
        for var_name in var_map.keys():
            source_name = var_map[var_name]
            sdgrid = self._data.get_var(source_name, self._requested_date)
            setattr(snow, var_name, grid2track.get_from_grid_variable(sdgrid))

        # Extract the W99 weight
        w99_weight = grid2track.get_from_grid_variable(self._data.w99_weight)

        # Apply the same modification as the Warren climatology
        # Apply ice_type (myi_fraction correction) but this time modified by the regional weight
        # of the Warren climatology. The weight ranges from 0 to 1 and make sure no fyi scaling is
        # applied over the AMSR2 region data
        scale_factor = (1.0 - l2.sitype
                        ) * self.cfg.options.fyi_correction_factor * w99_weight

        # The scaling factor affects the snow depth ...
        snow.depth = snow.depth - scale_factor * snow.depth

        # ... and the uncertainty. Here it is assumed that the uncertainty
        # is similar affected by the scaling factor.
        snow.depth_uncertainty = snow.depth_uncertainty - scale_factor * snow.depth_uncertainty

        # the uncertainty of the myi fraction is acknowledged by adding
        # an additional term that depends on snow depth, the magnitude of
        # scaling and the sea ice type uncertainty
        scaling_uncertainty = snow.depth * scale_factor * l2.sitype.uncertainty * w99_weight
        snow.depth_uncertainty = snow.depth_uncertainty + scaling_uncertainty

        return snow
コード例 #8
0
    def _get_sitype_track(self, l2):
        """ Extract ice type and ice type uncertainty along the track """

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.lon, self._data.lat
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude, grid_lons, grid_lats, griddef)
        sitype = grid2track.get_from_grid_variable(self._data.ice_type[0, :, :], flipud=True)
        uncertainty = grid2track.get_from_grid_variable(self._data.uncertainty[0, :, :], flipud=True)

        # Convert flags to myi fraction
        translator = np.array([np.nan, np.nan, 0.0, 1.0, 0.5, np.nan])
        fillvalues = np.where(sitype == -1)[0]
        sitype[fillvalues] = 5
        sitype = np.array([translator[value] for value in sitype])

        # Uncertainty in product is in %
        sitype_uncertainty = uncertainty / 100.

        return sitype, sitype_uncertainty
コード例 #9
0
ファイル: snow.py プロジェクト: sp-awi/pysiral
    def _get_snow_track(self, l2):
        """ Extract snow depth from grid """

        # Extract from grid
        griddef = self.cfg.options[l2.hemisphere]
        grid_lons, grid_lats = self._data.lon, self._data.lat
        grid2track = GridTrackInterpol(l2.track.longitude, l2.track.latitude, grid_lons, grid_lats, griddef)

        # Extract snow depth along track data from grid
        sd_parameter_name = self.cfg.options.snow_depth_nc_variable
        sdgrid = getattr(self._data, sd_parameter_name)[0, :, :]
        snow_depth = grid2track.get_from_grid_variable(sdgrid, flipud=True)
        snow_depth[snow_depth < 0.0] = np.nan

        # Extract snow depth uncertainty
        unc_parameter_name = self.cfg.options.snow_depth_uncertainty_nc_variable
        uncgrid = getattr(self._data, unc_parameter_name)[0, :, :]
        snow_depth_uncertainty = grid2track.get_from_grid_variable(uncgrid, flipud=True)
        snow_depth_uncertainty[snow_depth_uncertainty < 0.0] = np.nan

        return snow_depth, snow_depth_uncertainty