コード例 #1
0
 def _transform(self, data, X):
     logger.info("Transforming data")
     loadings = self.model.loadings[:self.n_components]
     loadings = DenseMatrix(X.numCols(), self.n_components,
                            loadings.flatten())
     X = X.multiply(loadings)
     data = join(data, X, self.spark)
     del X
     return data
コード例 #2
0
def fourier(X: RowMatrix, n_features, seed=23, gamma=1):
    p = X.numCols()
    random_state = numpy.random.RandomState(seed)

    w = numpy.sqrt(2 * gamma) * random_state.normal(size=(p, n_features))
    w = DenseMatrix(p, n_features, w.flatten(), isTransposed=True)
    b = random_state.uniform(0, 2 * numpy.pi, size=n_features)

    Y = fourier_transform(X, w, b)
    return Y, w, b
コード例 #3
0
ファイル: lda.py プロジェクト: dirmeier/pybda
 def _transform(self, data):
     logger.info("Transforming data")
     W = self.model.loadings[:, :self.n_components]
     W = DenseMatrix(numRows=W.shape[0],
                     numCols=W.shape[1],
                     isTransposed=True,
                     values=W.flatten())
     X = self._row_matrix(data).multiply(W)
     data = join(data, X, self.spark)
     del X
     return data
コード例 #4
0
 def _whiten(self, X):
     s, v, _ = svd(X, X.numCols())
     K = (v.T / s)[:, :self.n_components]
     S = K * scipy.sqrt(X.numRows())
     S = DenseMatrix(S.shape[0], S.shape[1], S.flatten(), True)
     return X.multiply(S), K