コード例 #1
0
class StreamingContextTests(PySparkStreamingTestCase):

    duration = 0.1
    setupCalled = False

    def _add_input_stream(self):
        inputs = [range(1, x) for x in range(101)]
        stream = self.ssc.queueStream(inputs)
        self._collect(stream, 1, block=False)

    def test_stop_only_streaming_context(self):
        self._add_input_stream()
        self.ssc.start()
        self.ssc.stop(False)
        self.assertEqual(
            len(self.sc.parallelize(range(5), 5).glom().collect()), 5)

    def test_stop_multiple_times(self):
        self._add_input_stream()
        self.ssc.start()
        self.ssc.stop(False)
        self.ssc.stop(False)

    def test_queue_stream(self):
        input = [list(range(i + 1)) for i in range(3)]
        dstream = self.ssc.queueStream(input)
        result = self._collect(dstream, 3)
        self.assertEqual(input, result)

    def test_text_file_stream(self):
        d = tempfile.mkdtemp()
        self.ssc = StreamingContext(self.sc, self.duration)
        dstream2 = self.ssc.textFileStream(d).map(int)
        result = self._collect(dstream2, 2, block=False)
        self.ssc.start()
        for name in ('a', 'b'):
            time.sleep(1)
            with open(os.path.join(d, name), "w") as f:
                f.writelines(["%d\n" % i for i in range(10)])
        self.wait_for(result, 2)
        self.assertEqual([list(range(10)), list(range(10))], result)

    def test_binary_records_stream(self):
        d = tempfile.mkdtemp()
        self.ssc = StreamingContext(self.sc, self.duration)
        dstream = self.ssc.binaryRecordsStream(
            d, 10).map(lambda v: struct.unpack("10b", bytes(v)))
        result = self._collect(dstream, 2, block=False)
        self.ssc.start()
        for name in ('a', 'b'):
            time.sleep(1)
            with open(os.path.join(d, name), "wb") as f:
                f.write(bytearray(range(10)))
        self.wait_for(result, 2)
        self.assertEqual([list(range(10)), list(range(10))],
                         [list(v[0]) for v in result])

    def test_union(self):
        input = [list(range(i + 1)) for i in range(3)]
        dstream = self.ssc.queueStream(input)
        dstream2 = self.ssc.queueStream(input)
        dstream3 = self.ssc.union(dstream, dstream2)
        result = self._collect(dstream3, 3)
        expected = [i * 2 for i in input]
        self.assertEqual(expected, result)

    def test_transform(self):
        dstream1 = self.ssc.queueStream([[1]])
        dstream2 = self.ssc.queueStream([[2]])
        dstream3 = self.ssc.queueStream([[3]])

        def func(rdds):
            rdd1, rdd2, rdd3 = rdds
            return rdd2.union(rdd3).union(rdd1)

        dstream = self.ssc.transform([dstream1, dstream2, dstream3], func)

        self.assertEqual([2, 3, 1], self._take(dstream, 3))

    def test_transform_pairrdd(self):
        # This regression test case is for SPARK-17756.
        dstream = self.ssc.queueStream(
            [[1], [2], [3]]).transform(lambda rdd: rdd.cartesian(rdd))
        self.assertEqual([(1, 1), (2, 2), (3, 3)], self._take(dstream, 3))

    def test_get_active(self):
        self.assertEqual(StreamingContext.getActive(), None)

        # Verify that getActive() returns the active context
        self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
        self.ssc.start()
        self.assertEqual(StreamingContext.getActive(), self.ssc)

        # Verify that getActive() returns None
        self.ssc.stop(False)
        self.assertEqual(StreamingContext.getActive(), None)

        # Verify that if the Java context is stopped, then getActive() returns None
        self.ssc = StreamingContext(self.sc, self.duration)
        self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
        self.ssc.start()
        self.assertEqual(StreamingContext.getActive(), self.ssc)
        self.ssc._jssc.stop(False)
        self.assertEqual(StreamingContext.getActive(), None)

    def test_get_active_or_create(self):
        # Test StreamingContext.getActiveOrCreate() without checkpoint data
        # See CheckpointTests for tests with checkpoint data
        self.ssc = None
        self.assertEqual(StreamingContext.getActive(), None)

        def setupFunc():
            ssc = StreamingContext(self.sc, self.duration)
            ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
            self.setupCalled = True
            return ssc

        # Verify that getActiveOrCreate() (w/o checkpoint) calls setupFunc when no context is active
        self.setupCalled = False
        self.ssc = StreamingContext.getActiveOrCreate(None, setupFunc)
        self.assertTrue(self.setupCalled)

        # Verify that getActiveOrCreate() returns active context and does not call the setupFunc
        self.ssc.start()
        self.setupCalled = False
        self.assertEqual(StreamingContext.getActiveOrCreate(None, setupFunc),
                         self.ssc)
        self.assertFalse(self.setupCalled)

        # Verify that getActiveOrCreate() calls setupFunc after active context is stopped
        self.ssc.stop(False)
        self.setupCalled = False
        self.ssc = StreamingContext.getActiveOrCreate(None, setupFunc)
        self.assertTrue(self.setupCalled)

        # Verify that if the Java context is stopped, then getActive() returns None
        self.ssc = StreamingContext(self.sc, self.duration)
        self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
        self.ssc.start()
        self.assertEqual(StreamingContext.getActive(), self.ssc)
        self.ssc._jssc.stop(False)
        self.setupCalled = False
        self.ssc = StreamingContext.getActiveOrCreate(None, setupFunc)
        self.assertTrue(self.setupCalled)

    def test_await_termination_or_timeout(self):
        self._add_input_stream()
        self.ssc.start()
        self.assertFalse(self.ssc.awaitTerminationOrTimeout(0.001))
        self.ssc.stop(False)
        self.assertTrue(self.ssc.awaitTerminationOrTimeout(0.001))
コード例 #2
0
ファイル: tests.py プロジェクト: ahnqirage/spark
class StreamingContextTests(PySparkStreamingTestCase):

    duration = 0.1
    setupCalled = False

    def _add_input_stream(self):
        inputs = [range(1, x) for x in range(101)]
        stream = self.ssc.queueStream(inputs)
        self._collect(stream, 1, block=False)

    def test_stop_only_streaming_context(self):
        self._add_input_stream()
        self.ssc.start()
        self.ssc.stop(False)
        self.assertEqual(len(self.sc.parallelize(range(5), 5).glom().collect()), 5)

    def test_stop_multiple_times(self):
        self._add_input_stream()
        self.ssc.start()
        self.ssc.stop(False)
        self.ssc.stop(False)

    def test_queue_stream(self):
        input = [list(range(i + 1)) for i in range(3)]
        dstream = self.ssc.queueStream(input)
        result = self._collect(dstream, 3)
        self.assertEqual(input, result)

    def test_text_file_stream(self):
        d = tempfile.mkdtemp()
        self.ssc = StreamingContext(self.sc, self.duration)
        dstream2 = self.ssc.textFileStream(d).map(int)
        result = self._collect(dstream2, 2, block=False)
        self.ssc.start()
        for name in ('a', 'b'):
            time.sleep(1)
            with open(os.path.join(d, name), "w") as f:
                f.writelines(["%d\n" % i for i in range(10)])
        self.wait_for(result, 2)
        self.assertEqual([list(range(10)), list(range(10))], result)

    def test_binary_records_stream(self):
        d = tempfile.mkdtemp()
        self.ssc = StreamingContext(self.sc, self.duration)
        dstream = self.ssc.binaryRecordsStream(d, 10).map(
            lambda v: struct.unpack("10b", bytes(v)))
        result = self._collect(dstream, 2, block=False)
        self.ssc.start()
        for name in ('a', 'b'):
            time.sleep(1)
            with open(os.path.join(d, name), "wb") as f:
                f.write(bytearray(range(10)))
        self.wait_for(result, 2)
        self.assertEqual([list(range(10)), list(range(10))], [list(v[0]) for v in result])

    def test_union(self):
        input = [list(range(i + 1)) for i in range(3)]
        dstream = self.ssc.queueStream(input)
        dstream2 = self.ssc.queueStream(input)
        dstream3 = self.ssc.union(dstream, dstream2)
        result = self._collect(dstream3, 3)
        expected = [i * 2 for i in input]
        self.assertEqual(expected, result)

    def test_transform(self):
        dstream1 = self.ssc.queueStream([[1]])
        dstream2 = self.ssc.queueStream([[2]])
        dstream3 = self.ssc.queueStream([[3]])

        def func(rdds):
            rdd1, rdd2, rdd3 = rdds
            return rdd2.union(rdd3).union(rdd1)

        dstream = self.ssc.transform([dstream1, dstream2, dstream3], func)

        self.assertEqual([2, 3, 1], self._take(dstream, 3))

    def test_transform_pairrdd(self):
        # This regression test case is for SPARK-17756.
        dstream = self.ssc.queueStream(
            [[1], [2], [3]]).transform(lambda rdd: rdd.cartesian(rdd))
        self.assertEqual([(1, 1), (2, 2), (3, 3)], self._take(dstream, 3))

    def test_get_active(self):
        self.assertEqual(StreamingContext.getActive(), None)

        # Verify that getActive() returns the active context
        self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
        self.ssc.start()
        self.assertEqual(StreamingContext.getActive(), self.ssc)

        # Verify that getActive() returns None
        self.ssc.stop(False)
        self.assertEqual(StreamingContext.getActive(), None)

        # Verify that if the Java context is stopped, then getActive() returns None
        self.ssc = StreamingContext(self.sc, self.duration)
        self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
        self.ssc.start()
        self.assertEqual(StreamingContext.getActive(), self.ssc)
        self.ssc._jssc.stop(False)
        self.assertEqual(StreamingContext.getActive(), None)

    def test_get_active_or_create(self):
        # Test StreamingContext.getActiveOrCreate() without checkpoint data
        # See CheckpointTests for tests with checkpoint data
        self.ssc = None
        self.assertEqual(StreamingContext.getActive(), None)

        def setupFunc():
            ssc = StreamingContext(self.sc, self.duration)
            ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
            self.setupCalled = True
            return ssc

        # Verify that getActiveOrCreate() (w/o checkpoint) calls setupFunc when no context is active
        self.setupCalled = False
        self.ssc = StreamingContext.getActiveOrCreate(None, setupFunc)
        self.assertTrue(self.setupCalled)

        # Verify that getActiveOrCreate() returns active context and does not call the setupFunc
        self.ssc.start()
        self.setupCalled = False
        self.assertEqual(StreamingContext.getActiveOrCreate(None, setupFunc), self.ssc)
        self.assertFalse(self.setupCalled)

        # Verify that getActiveOrCreate() calls setupFunc after active context is stopped
        self.ssc.stop(False)
        self.setupCalled = False
        self.ssc = StreamingContext.getActiveOrCreate(None, setupFunc)
        self.assertTrue(self.setupCalled)

        # Verify that if the Java context is stopped, then getActive() returns None
        self.ssc = StreamingContext(self.sc, self.duration)
        self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
        self.ssc.start()
        self.assertEqual(StreamingContext.getActive(), self.ssc)
        self.ssc._jssc.stop(False)
        self.setupCalled = False
        self.ssc = StreamingContext.getActiveOrCreate(None, setupFunc)
        self.assertTrue(self.setupCalled)

    def test_await_termination_or_timeout(self):
        self._add_input_stream()
        self.ssc.start()
        self.assertFalse(self.ssc.awaitTerminationOrTimeout(0.001))
        self.ssc.stop(False)
        self.assertTrue(self.ssc.awaitTerminationOrTimeout(0.001))
コード例 #3
0
class BasicOperationTests(PySparkStreamingTestCase):
    def test_map(self):
        """Basic operation test for DStream.map."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.map(str)

        expected = [list(map(str, x)) for x in input]
        self._test_func(input, func, expected)

    def test_flatMap(self):
        """Basic operation test for DStream.flatMap."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.flatMap(lambda x: (x, x * 2))

        expected = [
            list(chain.from_iterable((map(lambda y: [y, y * 2], x))))
            for x in input
        ]
        self._test_func(input, func, expected)

    def test_filter(self):
        """Basic operation test for DStream.filter."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.filter(lambda x: x % 2 == 0)

        expected = [[y for y in x if y % 2 == 0] for x in input]
        self._test_func(input, func, expected)

    def test_count(self):
        """Basic operation test for DStream.count."""
        input = [range(5), range(10), range(20)]

        def func(dstream):
            return dstream.count()

        expected = [[len(x)] for x in input]
        self._test_func(input, func, expected)

    def test_slice(self):
        """Basic operation test for DStream.slice."""
        import datetime as dt
        self.ssc = StreamingContext(self.sc, 1.0)
        self.ssc.remember(4.0)
        input = [[1], [2], [3], [4]]
        stream = self.ssc.queueStream(
            [self.sc.parallelize(d, 1) for d in input])

        time_vals = []

        def get_times(t, rdd):
            if rdd and len(time_vals) < len(input):
                time_vals.append(t)

        stream.foreachRDD(get_times)

        self.ssc.start()
        self.wait_for(time_vals, 4)
        begin_time = time_vals[0]

        def get_sliced(begin_delta, end_delta):
            begin = begin_time + dt.timedelta(seconds=begin_delta)
            end = begin_time + dt.timedelta(seconds=end_delta)
            rdds = stream.slice(begin, end)
            result_list = [rdd.collect() for rdd in rdds]
            return [r for result in result_list for r in result]

        self.assertEqual(set([1]), set(get_sliced(0, 0)))
        self.assertEqual(set([2, 3]), set(get_sliced(1, 2)))
        self.assertEqual(set([2, 3, 4]), set(get_sliced(1, 4)))
        self.assertEqual(set([1, 2, 3, 4]), set(get_sliced(0, 4)))

    def test_reduce(self):
        """Basic operation test for DStream.reduce."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.reduce(operator.add)

        expected = [[reduce(operator.add, x)] for x in input]
        self._test_func(input, func, expected)

    def test_reduceByKey(self):
        """Basic operation test for DStream.reduceByKey."""
        input = [[("a", 1), ("a", 1), ("b", 1), ("b", 1)],
                 [("", 1), ("", 1), ("", 1), ("", 1)],
                 [(1, 1), (1, 1), (2, 1), (2, 1), (3, 1)]]

        def func(dstream):
            return dstream.reduceByKey(operator.add)

        expected = [[("a", 2), ("b", 2)], [("", 4)], [(1, 2), (2, 2), (3, 1)]]
        self._test_func(input, func, expected, sort=True)

    def test_mapValues(self):
        """Basic operation test for DStream.mapValues."""
        input = [[("a", 2), ("b", 2), ("c", 1), ("d", 1)],
                 [(0, 4), (1, 1), (2, 2), (3, 3)],
                 [(1, 1), (2, 1), (3, 1), (4, 1)]]

        def func(dstream):
            return dstream.mapValues(lambda x: x + 10)

        expected = [[("a", 12), ("b", 12), ("c", 11), ("d", 11)],
                    [(0, 14), (1, 11), (2, 12), (3, 13)],
                    [(1, 11), (2, 11), (3, 11), (4, 11)]]
        self._test_func(input, func, expected, sort=True)

    def test_flatMapValues(self):
        """Basic operation test for DStream.flatMapValues."""
        input = [[("a", 2), ("b", 2), ("c", 1), ("d", 1)],
                 [(0, 4), (1, 1), (2, 1), (3, 1)],
                 [(1, 1), (2, 1), (3, 1), (4, 1)]]

        def func(dstream):
            return dstream.flatMapValues(lambda x: (x, x + 10))

        expected = [[("a", 2), ("a", 12), ("b", 2), ("b", 12), ("c", 1),
                     ("c", 11), ("d", 1), ("d", 11)],
                    [(0, 4), (0, 14), (1, 1), (1, 11), (2, 1), (2, 11), (3, 1),
                     (3, 11)],
                    [(1, 1), (1, 11), (2, 1), (2, 11), (3, 1), (3, 11), (4, 1),
                     (4, 11)]]
        self._test_func(input, func, expected)

    def test_glom(self):
        """Basic operation test for DStream.glom."""
        input = [range(1, 5), range(5, 9), range(9, 13)]
        rdds = [self.sc.parallelize(r, 2) for r in input]

        def func(dstream):
            return dstream.glom()

        expected = [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]
        self._test_func(rdds, func, expected)

    def test_mapPartitions(self):
        """Basic operation test for DStream.mapPartitions."""
        input = [range(1, 5), range(5, 9), range(9, 13)]
        rdds = [self.sc.parallelize(r, 2) for r in input]

        def func(dstream):
            def f(iterator):
                yield sum(iterator)

            return dstream.mapPartitions(f)

        expected = [[3, 7], [11, 15], [19, 23]]
        self._test_func(rdds, func, expected)

    def test_countByValue(self):
        """Basic operation test for DStream.countByValue."""
        input = [
            list(range(1, 5)) * 2,
            list(range(5, 7)) + list(range(5, 9)), ["a", "a", "b", ""]
        ]

        def func(dstream):
            return dstream.countByValue()

        expected = [[(1, 2), (2, 2), (3, 2), (4, 2)],
                    [(5, 2), (6, 2), (7, 1), (8, 1)],
                    [("a", 2), ("b", 1), ("", 1)]]
        self._test_func(input, func, expected, sort=True)

    def test_groupByKey(self):
        """Basic operation test for DStream.groupByKey."""
        input = [[(1, 1), (2, 1), (3, 1), (4, 1)],
                 [(1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1)],
                 [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 1), ("", 1)]]

        def func(dstream):
            return dstream.groupByKey().mapValues(list)

        expected = [[(1, [1]), (2, [1]), (3, [1]), (4, [1])],
                    [(1, [1, 1, 1]), (2, [1, 1]), (3, [1])],
                    [("a", [1, 1]), ("b", [1]), ("", [1, 1, 1])]]
        self._test_func(input, func, expected, sort=True)

    def test_combineByKey(self):
        """Basic operation test for DStream.combineByKey."""
        input = [[(1, 1), (2, 1), (3, 1), (4, 1)],
                 [(1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1)],
                 [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 1), ("", 1)]]

        def func(dstream):
            def add(a, b):
                return a + str(b)

            return dstream.combineByKey(str, add, add)

        expected = [[(1, "1"), (2, "1"), (3, "1"), (4, "1")],
                    [(1, "111"), (2, "11"), (3, "1")],
                    [("a", "11"), ("b", "1"), ("", "111")]]
        self._test_func(input, func, expected, sort=True)

    def test_repartition(self):
        input = [range(1, 5), range(5, 9)]
        rdds = [self.sc.parallelize(r, 2) for r in input]

        def func(dstream):
            return dstream.repartition(1).glom()

        expected = [[[1, 2, 3, 4]], [[5, 6, 7, 8]]]
        self._test_func(rdds, func, expected)

    def test_union(self):
        input1 = [range(3), range(5), range(6)]
        input2 = [range(3, 6), range(5, 6)]

        def func(d1, d2):
            return d1.union(d2)

        expected = [list(range(6)), list(range(6)), list(range(6))]
        self._test_func(input1, func, expected, input2=input2)

    def test_cogroup(self):
        input = [[(1, 1), (2, 1), (3, 1)], [(1, 1), (1, 1), (1, 1), (2, 1)],
                 [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 1)]]
        input2 = [[(1, 2)], [(4, 1)],
                  [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 2)]]

        def func(d1, d2):
            return d1.cogroup(d2).mapValues(lambda vs: tuple(map(list, vs)))

        expected = [[(1, ([1], [2])), (2, ([1], [])), (3, ([1], []))],
                    [(1, ([1, 1, 1], [])), (2, ([1], [])), (4, ([], [1]))],
                    [("a", ([1, 1], [1, 1])), ("b", ([1], [1])),
                     ("", ([1, 1], [1, 2]))]]
        self._test_func(input, func, expected, sort=True, input2=input2)

    def test_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.join(b)

        expected = [[('b', (2, 3))]]
        self._test_func(input, func, expected, True, input2)

    def test_left_outer_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.leftOuterJoin(b)

        expected = [[('a', (1, None)), ('b', (2, 3))]]
        self._test_func(input, func, expected, True, input2)

    def test_right_outer_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.rightOuterJoin(b)

        expected = [[('b', (2, 3)), ('c', (None, 4))]]
        self._test_func(input, func, expected, True, input2)

    def test_full_outer_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.fullOuterJoin(b)

        expected = [[('a', (1, None)), ('b', (2, 3)), ('c', (None, 4))]]
        self._test_func(input, func, expected, True, input2)

    def test_update_state_by_key(self):
        def updater(vs, s):
            if not s:
                s = []
            s.extend(vs)
            return s

        input = [[('k', i)] for i in range(5)]

        def func(dstream):
            return dstream.updateStateByKey(updater)

        expected = [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]
        expected = [[('k', v)] for v in expected]
        self._test_func(input, func, expected)

    def test_update_state_by_key_initial_rdd(self):
        def updater(vs, s):
            if not s:
                s = []
            s.extend(vs)
            return s

        initial = [('k', [0, 1])]
        initial = self.sc.parallelize(initial, 1)

        input = [[('k', i)] for i in range(2, 5)]

        def func(dstream):
            return dstream.updateStateByKey(updater, initialRDD=initial)

        expected = [[0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]
        expected = [[('k', v)] for v in expected]
        self._test_func(input, func, expected)

    def test_failed_func(self):
        # Test failure in
        # TransformFunction.apply(rdd: Option[RDD[_]], time: Time)
        input = [self.sc.parallelize([d], 1) for d in range(4)]
        input_stream = self.ssc.queueStream(input)

        def failed_func(i):
            raise ValueError("This is a special error")

        input_stream.map(failed_func).pprint()
        self.ssc.start()
        try:
            self.ssc.awaitTerminationOrTimeout(10)
        except:
            import traceback
            failure = traceback.format_exc()
            self.assertTrue("This is a special error" in failure)
            return

        self.fail("a failed func should throw an error")

    def test_failed_func2(self):
        # Test failure in
        # TransformFunction.apply(rdd: Option[RDD[_]], rdd2: Option[RDD[_]], time: Time)
        input = [self.sc.parallelize([d], 1) for d in range(4)]
        input_stream1 = self.ssc.queueStream(input)
        input_stream2 = self.ssc.queueStream(input)

        def failed_func(rdd1, rdd2):
            raise ValueError("This is a special error")

        input_stream1.transformWith(failed_func, input_stream2, True).pprint()
        self.ssc.start()
        try:
            self.ssc.awaitTerminationOrTimeout(10)
        except:
            import traceback
            failure = traceback.format_exc()
            self.assertTrue("This is a special error" in failure)
            return

        self.fail("a failed func should throw an error")

    def test_failed_func_with_reseting_failure(self):
        input = [self.sc.parallelize([d], 1) for d in range(4)]
        input_stream = self.ssc.queueStream(input)

        def failed_func(i):
            if i == 1:
                # Make it fail in the second batch
                raise ValueError("This is a special error")
            else:
                return i

        # We should be able to see the results of the 3rd and 4th batches even if the second batch
        # fails
        expected = [[0], [2], [3]]
        self.assertEqual(expected,
                         self._collect(input_stream.map(failed_func), 3))
        try:
            self.ssc.awaitTerminationOrTimeout(10)
        except:
            import traceback
            failure = traceback.format_exc()
            self.assertTrue("This is a special error" in failure)
            return

        self.fail("a failed func should throw an error")
コード例 #4
0
ファイル: tests.py プロジェクト: ahnqirage/spark
class BasicOperationTests(PySparkStreamingTestCase):

    def test_map(self):
        """Basic operation test for DStream.map."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.map(str)
        expected = [list(map(str, x)) for x in input]
        self._test_func(input, func, expected)

    def test_flatMap(self):
        """Basic operation test for DStream.flatMap."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.flatMap(lambda x: (x, x * 2))
        expected = [list(chain.from_iterable((map(lambda y: [y, y * 2], x))))
                    for x in input]
        self._test_func(input, func, expected)

    def test_filter(self):
        """Basic operation test for DStream.filter."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.filter(lambda x: x % 2 == 0)
        expected = [[y for y in x if y % 2 == 0] for x in input]
        self._test_func(input, func, expected)

    def test_count(self):
        """Basic operation test for DStream.count."""
        input = [range(5), range(10), range(20)]

        def func(dstream):
            return dstream.count()
        expected = [[len(x)] for x in input]
        self._test_func(input, func, expected)

    def test_slice(self):
        """Basic operation test for DStream.slice."""
        import datetime as dt
        self.ssc = StreamingContext(self.sc, 1.0)
        self.ssc.remember(4.0)
        input = [[1], [2], [3], [4]]
        stream = self.ssc.queueStream([self.sc.parallelize(d, 1) for d in input])

        time_vals = []

        def get_times(t, rdd):
            if rdd and len(time_vals) < len(input):
                time_vals.append(t)

        stream.foreachRDD(get_times)

        self.ssc.start()
        self.wait_for(time_vals, 4)
        begin_time = time_vals[0]

        def get_sliced(begin_delta, end_delta):
            begin = begin_time + dt.timedelta(seconds=begin_delta)
            end = begin_time + dt.timedelta(seconds=end_delta)
            rdds = stream.slice(begin, end)
            result_list = [rdd.collect() for rdd in rdds]
            return [r for result in result_list for r in result]

        self.assertEqual(set([1]), set(get_sliced(0, 0)))
        self.assertEqual(set([2, 3]), set(get_sliced(1, 2)))
        self.assertEqual(set([2, 3, 4]), set(get_sliced(1, 4)))
        self.assertEqual(set([1, 2, 3, 4]), set(get_sliced(0, 4)))

    def test_reduce(self):
        """Basic operation test for DStream.reduce."""
        input = [range(1, 5), range(5, 9), range(9, 13)]

        def func(dstream):
            return dstream.reduce(operator.add)
        expected = [[reduce(operator.add, x)] for x in input]
        self._test_func(input, func, expected)

    def test_reduceByKey(self):
        """Basic operation test for DStream.reduceByKey."""
        input = [[("a", 1), ("a", 1), ("b", 1), ("b", 1)],
                 [("", 1), ("", 1), ("", 1), ("", 1)],
                 [(1, 1), (1, 1), (2, 1), (2, 1), (3, 1)]]

        def func(dstream):
            return dstream.reduceByKey(operator.add)
        expected = [[("a", 2), ("b", 2)], [("", 4)], [(1, 2), (2, 2), (3, 1)]]
        self._test_func(input, func, expected, sort=True)

    def test_mapValues(self):
        """Basic operation test for DStream.mapValues."""
        input = [[("a", 2), ("b", 2), ("c", 1), ("d", 1)],
                 [(0, 4), (1, 1), (2, 2), (3, 3)],
                 [(1, 1), (2, 1), (3, 1), (4, 1)]]

        def func(dstream):
            return dstream.mapValues(lambda x: x + 10)
        expected = [[("a", 12), ("b", 12), ("c", 11), ("d", 11)],
                    [(0, 14), (1, 11), (2, 12), (3, 13)],
                    [(1, 11), (2, 11), (3, 11), (4, 11)]]
        self._test_func(input, func, expected, sort=True)

    def test_flatMapValues(self):
        """Basic operation test for DStream.flatMapValues."""
        input = [[("a", 2), ("b", 2), ("c", 1), ("d", 1)],
                 [(0, 4), (1, 1), (2, 1), (3, 1)],
                 [(1, 1), (2, 1), (3, 1), (4, 1)]]

        def func(dstream):
            return dstream.flatMapValues(lambda x: (x, x + 10))
        expected = [[("a", 2), ("a", 12), ("b", 2), ("b", 12),
                     ("c", 1), ("c", 11), ("d", 1), ("d", 11)],
                    [(0, 4), (0, 14), (1, 1), (1, 11), (2, 1), (2, 11), (3, 1), (3, 11)],
                    [(1, 1), (1, 11), (2, 1), (2, 11), (3, 1), (3, 11), (4, 1), (4, 11)]]
        self._test_func(input, func, expected)

    def test_glom(self):
        """Basic operation test for DStream.glom."""
        input = [range(1, 5), range(5, 9), range(9, 13)]
        rdds = [self.sc.parallelize(r, 2) for r in input]

        def func(dstream):
            return dstream.glom()
        expected = [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]]
        self._test_func(rdds, func, expected)

    def test_mapPartitions(self):
        """Basic operation test for DStream.mapPartitions."""
        input = [range(1, 5), range(5, 9), range(9, 13)]
        rdds = [self.sc.parallelize(r, 2) for r in input]

        def func(dstream):
            def f(iterator):
                yield sum(iterator)
            return dstream.mapPartitions(f)
        expected = [[3, 7], [11, 15], [19, 23]]
        self._test_func(rdds, func, expected)

    def test_countByValue(self):
        """Basic operation test for DStream.countByValue."""
        input = [list(range(1, 5)) * 2, list(range(5, 7)) + list(range(5, 9)), ["a", "a", "b", ""]]

        def func(dstream):
            return dstream.countByValue()
        expected = [[(1, 2), (2, 2), (3, 2), (4, 2)],
                    [(5, 2), (6, 2), (7, 1), (8, 1)],
                    [("a", 2), ("b", 1), ("", 1)]]
        self._test_func(input, func, expected, sort=True)

    def test_groupByKey(self):
        """Basic operation test for DStream.groupByKey."""
        input = [[(1, 1), (2, 1), (3, 1), (4, 1)],
                 [(1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1)],
                 [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 1), ("", 1)]]

        def func(dstream):
            return dstream.groupByKey().mapValues(list)

        expected = [[(1, [1]), (2, [1]), (3, [1]), (4, [1])],
                    [(1, [1, 1, 1]), (2, [1, 1]), (3, [1])],
                    [("a", [1, 1]), ("b", [1]), ("", [1, 1, 1])]]
        self._test_func(input, func, expected, sort=True)

    def test_combineByKey(self):
        """Basic operation test for DStream.combineByKey."""
        input = [[(1, 1), (2, 1), (3, 1), (4, 1)],
                 [(1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1)],
                 [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 1), ("", 1)]]

        def func(dstream):
            def add(a, b):
                return a + str(b)
            return dstream.combineByKey(str, add, add)
        expected = [[(1, "1"), (2, "1"), (3, "1"), (4, "1")],
                    [(1, "111"), (2, "11"), (3, "1")],
                    [("a", "11"), ("b", "1"), ("", "111")]]
        self._test_func(input, func, expected, sort=True)

    def test_repartition(self):
        input = [range(1, 5), range(5, 9)]
        rdds = [self.sc.parallelize(r, 2) for r in input]

        def func(dstream):
            return dstream.repartition(1).glom()
        expected = [[[1, 2, 3, 4]], [[5, 6, 7, 8]]]
        self._test_func(rdds, func, expected)

    def test_union(self):
        input1 = [range(3), range(5), range(6)]
        input2 = [range(3, 6), range(5, 6)]

        def func(d1, d2):
            return d1.union(d2)

        expected = [list(range(6)), list(range(6)), list(range(6))]
        self._test_func(input1, func, expected, input2=input2)

    def test_cogroup(self):
        input = [[(1, 1), (2, 1), (3, 1)],
                 [(1, 1), (1, 1), (1, 1), (2, 1)],
                 [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 1)]]
        input2 = [[(1, 2)],
                  [(4, 1)],
                  [("a", 1), ("a", 1), ("b", 1), ("", 1), ("", 2)]]

        def func(d1, d2):
            return d1.cogroup(d2).mapValues(lambda vs: tuple(map(list, vs)))

        expected = [[(1, ([1], [2])), (2, ([1], [])), (3, ([1], []))],
                    [(1, ([1, 1, 1], [])), (2, ([1], [])), (4, ([], [1]))],
                    [("a", ([1, 1], [1, 1])), ("b", ([1], [1])), ("", ([1, 1], [1, 2]))]]
        self._test_func(input, func, expected, sort=True, input2=input2)

    def test_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.join(b)

        expected = [[('b', (2, 3))]]
        self._test_func(input, func, expected, True, input2)

    def test_left_outer_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.leftOuterJoin(b)

        expected = [[('a', (1, None)), ('b', (2, 3))]]
        self._test_func(input, func, expected, True, input2)

    def test_right_outer_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.rightOuterJoin(b)

        expected = [[('b', (2, 3)), ('c', (None, 4))]]
        self._test_func(input, func, expected, True, input2)

    def test_full_outer_join(self):
        input = [[('a', 1), ('b', 2)]]
        input2 = [[('b', 3), ('c', 4)]]

        def func(a, b):
            return a.fullOuterJoin(b)

        expected = [[('a', (1, None)), ('b', (2, 3)), ('c', (None, 4))]]
        self._test_func(input, func, expected, True, input2)

    def test_update_state_by_key(self):

        def updater(vs, s):
            if not s:
                s = []
            s.extend(vs)
            return s

        input = [[('k', i)] for i in range(5)]

        def func(dstream):
            return dstream.updateStateByKey(updater)

        expected = [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]
        expected = [[('k', v)] for v in expected]
        self._test_func(input, func, expected)

    def test_update_state_by_key_initial_rdd(self):

        def updater(vs, s):
            if not s:
                s = []
            s.extend(vs)
            return s

        initial = [('k', [0, 1])]
        initial = self.sc.parallelize(initial, 1)

        input = [[('k', i)] for i in range(2, 5)]

        def func(dstream):
            return dstream.updateStateByKey(updater, initialRDD=initial)

        expected = [[0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]
        expected = [[('k', v)] for v in expected]
        self._test_func(input, func, expected)

    def test_failed_func(self):
        # Test failure in
        # TransformFunction.apply(rdd: Option[RDD[_]], time: Time)
        input = [self.sc.parallelize([d], 1) for d in range(4)]
        input_stream = self.ssc.queueStream(input)

        def failed_func(i):
            raise ValueError("This is a special error")

        input_stream.map(failed_func).pprint()
        self.ssc.start()
        try:
            self.ssc.awaitTerminationOrTimeout(10)
        except:
            import traceback
            failure = traceback.format_exc()
            self.assertTrue("This is a special error" in failure)
            return

        self.fail("a failed func should throw an error")

    def test_failed_func2(self):
        # Test failure in
        # TransformFunction.apply(rdd: Option[RDD[_]], rdd2: Option[RDD[_]], time: Time)
        input = [self.sc.parallelize([d], 1) for d in range(4)]
        input_stream1 = self.ssc.queueStream(input)
        input_stream2 = self.ssc.queueStream(input)

        def failed_func(rdd1, rdd2):
            raise ValueError("This is a special error")

        input_stream1.transformWith(failed_func, input_stream2, True).pprint()
        self.ssc.start()
        try:
            self.ssc.awaitTerminationOrTimeout(10)
        except:
            import traceback
            failure = traceback.format_exc()
            self.assertTrue("This is a special error" in failure)
            return

        self.fail("a failed func should throw an error")

    def test_failed_func_with_reseting_failure(self):
        input = [self.sc.parallelize([d], 1) for d in range(4)]
        input_stream = self.ssc.queueStream(input)

        def failed_func(i):
            if i == 1:
                # Make it fail in the second batch
                raise ValueError("This is a special error")
            else:
                return i

        # We should be able to see the results of the 3rd and 4th batches even if the second batch
        # fails
        expected = [[0], [2], [3]]
        self.assertEqual(expected, self._collect(input_stream.map(failed_func), 3))
        try:
            self.ssc.awaitTerminationOrTimeout(10)
        except:
            import traceback
            failure = traceback.format_exc()
            self.assertTrue("This is a special error" in failure)
            return

        self.fail("a failed func should throw an error")