コード例 #1
0
def test2Dfit(fitType = None, verbose = False):
    testDebug = 0
    testOptimizer = 'levmar'
    roi = [1, 325, 1, 335]
    conIm = PrincetonSPEFile('testimage.spe')[0].astype(float32)
    conZ = array(meshgrid(arange(roi[0], roi[0] + roi[1]), arange(roi[2], roi[2] + roi[3])))
    if fitType == 'twodgauss':    
        guess = array([ conIm.max(), 162.5, 5, 167.5, 6])
        func = [twodgauss]
    elif fitType == 'twodgausslin':
        guess = array([ 0.01*conIm.max(), 1e-8, 1e-8, conIm.max(), 162.5, 5, 167.5, 6])
        func = [twodlin, twodgauss]

    times = []
    for optimizer in ['leastsq', 'levmar', 'mpfit']:
        f = fit.fit(x = conZ, y = conIm, funcs = func , guess = guess, 
                    debug = testDebug, optimizer = optimizer)
        t1 = time.time()
        f.go()
        t2 = time.time()

        times.append('Optimizer %s took %0.3f s' % (optimizer, (t2-t1)))
   
    for t in times:
        print t
コード例 #2
0
def test2Dfit(fitType=None, verbose=False):
    testDebug = 0
    testOptimizer = 'levmar'
    roi = [1, 325, 1, 335]
    conIm = PrincetonSPEFile('testimage.spe')[0].astype(float32)
    conZ = array(
        meshgrid(arange(roi[0], roi[0] + roi[1]),
                 arange(roi[2], roi[2] + roi[3])))
    if fitType == 'twodgauss':
        guess = array([conIm.max(), 162.5, 5, 167.5, 6])
        func = [twodgauss]
    elif fitType == 'twodgausslin':
        guess = array(
            [0.01 * conIm.max(), 1e-8, 1e-8,
             conIm.max(), 162.5, 5, 167.5, 6])
        func = [twodlin, twodgauss]

    times = []
    for optimizer in ['leastsq', 'levmar', 'mpfit']:
        f = fit.fit(x=conZ,
                    y=conIm,
                    funcs=func,
                    guess=guess,
                    debug=testDebug,
                    optimizer=optimizer)
        t1 = time.time()
        f.go()
        t2 = time.time()

        times.append('Optimizer %s took %0.3f s' % (optimizer, (t2 - t1)))

    for t in times:
        print t
コード例 #3
0
ファイル: fittest.py プロジェクト: BootstrapB/pyspec-0.2-r213
def fittest():
    data = loadtxt('testdata.dat')

    times = []
    for optimizer in ['leastsq', 'levmar', 'mpfit']:
        f = fit.fit(x = data[:,0], y = data[:,1], 
                    funcs = [fitfuncs.linear, fitfuncs.gauss],
                    optimizer = optimizer)
        t1 = time.time()
        f.go()
        t2 = time.time()
        times.append('Optimizer %s took %0.3f s' % (optimizer, (t2-t1)))
        
    for t in times:
        print t
コード例 #4
0
ファイル: fittest.py プロジェクト: JackRBlack/pyspec
def fittest():
    data = loadtxt('testdata.dat')

    times = []
    for optimizer in ['leastsq', 'levmar', 'mpfit']:
        f = fit.fit(x=data[:, 0],
                    y=data[:, 1],
                    funcs=[fitfuncs.linear, fitfuncs.gauss],
                    optimizer=optimizer)
        t1 = time.time()
        f.go()
        t2 = time.time()
        times.append('Optimizer %s took %0.3f s' % (optimizer, (t2 - t1)))

    for t in times:
        print t
コード例 #5
0
ファイル: id31_tools.py プロジェクト: jackey-qiu/DaFy
def peak_analysis(img,
                  x,
                  y,
                  dxy=40,
                  interpolation_points=80,
                  show_plots=False,
                  center_on_max=True,
                  calculate_width=False):
    x = int(x + 0.5)
    y = int(y + 0.5)

    sub_img = img[y - dxy:y + dxy, x - dxy:x + dxy].copy()
    params = peak_params()

    # calculate COM
    COM = scipy.ndimage.measurements.center_of_mass(sub_img)
    max_pos = scipy.ndimage.measurements.maximum_position(sub_img)

    #TODO: check if we want to use the max pixel or the COM for the width measurements
    if (center_on_max):
        used_peak_pos_small = np.array((max_pos[1], max_pos[0]))
        used_peak_pos_large = np.array(
            (x - dxy + max_pos[1], y - dxy + max_pos[0]))
    else:
        used_peak_pos_small = np.array((COM[1], COM[0]))
        used_peak_pos_large = np.array((x - dxy + COM[1], y - dxy + COM[0]))

    params.COM = np.array((x - dxy + COM[1], y - dxy + COM[0]))
    params.max_pos = np.array((x - dxy + max_pos[1], y - dxy + max_pos[0]))

    r_x_para = 1024 - used_peak_pos_large[0]
    r_y_para = 1024 - used_peak_pos_large[1]
    r_mag = np.sqrt(r_x_para**2 + r_y_para**2)
    r_x_para /= r_mag
    r_y_para /= r_mag

    if (r_x_para == 0 or r_y_para == 0):
        r_x_perp = r_y_para
        r_y_perp = r_x_para
    else:
        r_x_perp = 1. / r_x_para
        r_y_perp = -1. / r_y_para
        r_mag = np.sqrt(r_x_perp**2 + r_y_perp**2)
        r_x_perp /= r_mag
        r_y_perp /= r_mag

    # subtract background
    sub_img_bg = img[y - 2 * dxy:y + 2 * dxy, x - 2 * dxy:x + 2 * dxy].copy()
    xi = np.arange(4 * dxy)
    yi = np.arange(4 * dxy)
    func_bg = scipy.interpolate.RectBivariateSpline(xi, yi, sub_img_bg)

    d_vals = np.arange(4 * dxy) - 4 * dxy / 2.
    f_bg1 = np.zeros(len(d_vals))
    f_bg2 = np.zeros(len(d_vals))
    f_bg = np.zeros(len(d_vals))

    p_1_x = np.sqrt(2) * dxy * r_x_perp + 2 * dxy
    p_1_y = np.sqrt(2) * dxy * r_y_perp + 2 * dxy

    p_2_x = -np.sqrt(2) * dxy * r_x_perp + 2 * dxy
    p_2_y = -np.sqrt(2) * dxy * r_y_perp + 2 * dxy

    line_p1_x = []
    line_p1_y = []
    line_p2_x = []
    line_p2_y = []

    for i in xrange(len(d_vals)):
        f_bg1[i] = func_bg(p_1_x + d_vals[i] * r_x_para,
                           p_1_y + d_vals[i] * r_y_para)
        f_bg2[i] = func_bg(p_2_x + d_vals[i] * r_x_para,
                           p_2_y + d_vals[i] * r_y_para)
        f_bg[i] = (f_bg1[i] + f_bg2[i]) / 2.

        #f_bg[i] /= 2.

        line_p1_x.append(p_1_x + d_vals[i] * r_x_para)
        line_p1_y.append(p_1_y + d_vals[i] * r_y_para)
        line_p2_x.append(p_2_x + d_vals[i] * r_x_para)
        line_p2_y.append(p_2_y + d_vals[i] * r_y_para)

    if (show_plots):
        plt.figure()
        plt.plot(f_bg1)
        plt.plot(f_bg2)

        fig = plt.figure()
        plt.title('Image with Background')
        ax = fig.add_subplot(111)
        im = ax.imshow(sub_img, interpolation='None')
        ax.plot([used_peak_pos_small[0]], [used_peak_pos_small[1]], 'wd')
        ax.format_coord = Imshow_Formatter(im)
        plt.show()

    dummy, bg_arr = np.meshgrid(f_bg, f_bg)
    bg_arr_rot = scipy.ndimage.interpolation.rotate(
        bg_arr, deg(np.arctan2(r_x_para, r_y_para)), reshape=False)
    bg_arr_rot_cut = bg_arr_rot[dxy:3 * dxy, dxy:3 * dxy]
    sub_img -= bg_arr_rot_cut

    params.max = scipy.ndimage.measurements.maximum(sub_img)
    params.integrated_intensity = np.sum(sub_img)

    if (show_plots):
        fig = plt.figure()
        plt.title('Background subtracted')
        ax = fig.add_subplot(111)
        im = ax.imshow(sub_img, interpolation='None')
        ax.plot([used_peak_pos_small[0]], [used_peak_pos_small[1]], 'wd')
        ax.format_coord = Imshow_Formatter(im)

        fig = plt.figure()
        ax = fig.add_subplot(111)
        im = ax.imshow(sub_img_bg, interpolation='None')
        ax.plot(line_p1_x, line_p1_y, 'w')
        ax.plot(line_p2_x, line_p2_y, 'w')
        ax.format_coord = Imshow_Formatter(im)

    # calculate peak width
    if (calculate_width):
        xi = np.arange(2 * dxy)
        yi = np.arange(2 * dxy)
        func = scipy.interpolate.RectBivariateSpline(xi, yi, sub_img)

        d_vals = np.arange(interpolation_points) - int(
            interpolation_points / 2.)
        d_x_para = np.zeros(len(d_vals))
        d_y_para = np.zeros(len(d_vals))
        d_ints_para = np.zeros(len(d_vals))
        d_x_perp = np.zeros(len(d_vals))
        d_y_perp = np.zeros(len(d_vals))
        d_ints_perp = np.zeros(len(d_vals))

        for i in xrange(len(d_vals)):
            d_x_para[i] = used_peak_pos_small[0] + d_vals[i] * r_x_para
            d_y_para[i] = used_peak_pos_small[1] + d_vals[i] * r_y_para
            d_ints_para[i] = func(
                used_peak_pos_small[0] + d_vals[i] * r_x_para,
                used_peak_pos_small[1] + d_vals[i] * r_y_para)
            d_x_perp[i] = used_peak_pos_small[0] + d_vals[i] * r_x_perp
            d_y_perp[i] = used_peak_pos_small[1] + d_vals[i] * r_y_perp
            d_ints_perp[i] = func(
                used_peak_pos_small[0] + d_vals[i] * r_x_perp,
                used_peak_pos_small[1] + d_vals[i] * r_y_perp)

        try:
            df_para = fit.fit(
                x=d_vals,
                y=d_ints_para,
                funcs=[pyspec.fitfuncs.gauss, pyspec.fitfuncs.linear])
            df_para.run()
            df_perp = fit.fit(
                x=d_vals,
                y=d_ints_perp,
                funcs=[pyspec.fitfuncs.gauss, pyspec.fitfuncs.linear])
            df_perp.run()

            params.FWHM_para = 2. * np.sqrt(
                2. * np.log(2.)) * df_para.result[1]
            params.FWHM_perp = 2. * np.sqrt(
                2. * np.log(2.)) * df_perp.result[1]

            if (show_plots):
                fig = plt.figure()
                ax = fig.add_subplot(111)
                im = ax.imshow(sub_img, interpolation='None')
                ax.plot([used_peak_pos_small[0]], [used_peak_pos_small[1]],
                        'wd')
                ax.plot(d_x_para, d_y_para, 'r-')
                ax.plot(d_x_perp, d_y_perp, 'b-')
                ax.format_coord = Imshow_Formatter(im)

                plt.figure()
                plt.plot(d_vals, d_ints_para, 'r-')
                plt.plot(d_vals, d_ints_perp, 'b-')
                plt.plot(
                    d_vals,
                    pyspec.fitfuncs.gauss(d_vals, df_para.result[0:3]) +
                    pyspec.fitfuncs.linear(d_vals, df_para.result[3:]), 'r--')
                plt.plot(
                    d_vals,
                    pyspec.fitfuncs.gauss(d_vals, df_perp.result[0:3]) +
                    pyspec.fitfuncs.linear(d_vals, df_perp.result[3:]), 'b--')
        except:
            return params

    return params
コード例 #6
0
    if (do_plot):
        plt.figure()
        plt.imshow(img)

    # Fit L cuts
    L_cut_half_width = 10
    L_cut_img = img[:, COM[1] - L_cut_half_width:COM[1] + L_cut_half_width +
                    1]  #img[: , 372:408]
    L_cut = np.sum(L_cut_img, axis=1)
    L_cut[255:261] = (L_cut[253] + L_cut[254] + L_cut[261] +
                      L_cut[262]) / 4.  # remove border between ccd panels
    L_cut[338] = (L_cut[337] + L_cut[339]) / 2.  # remove dead pixel

    df = fit.fit(x=np.arange(516),
                 y=L_cut,
                 xlimits=[66, 515],
                 funcs=[pyspec.fitfuncs.pvoight, pyspec.fitfuncs.constant])
    df.run()

    _x = np.arange(800)
    _y = pyspec.fitfuncs.pvoight(
        _x, df.result[0:4]) + pyspec.fitfuncs.constant(_x, df.result[4:])

    if (do_plot):
        plt.figure()
        plt.plot(L_cut)
        plt.plot(_x, _y)

    L_params = df.result
    print df.result