def test_load_default_model(): machine = MachineFactory() model = machine.load_model() assert isinstance(model, CNNClassificationModel) assert isinstance(model, Resnet50CNNModel)
def test_load_model(): machine = MachineFactory() model = machine.load_model( "pyspec.machine.model.application.Resnet50CNNModel") assert isinstance(model, CNNClassificationModel) assert isinstance(model, Resnet50CNNModel)
def test_load_encoder(): machine = MachineFactory() encoder = machine.load_encoder() assert encoder.width == 500 assert encoder.height == 500 assert encoder.axis is False assert encoder.intensity_max == 1000 assert encoder.min_mz == 0 assert encoder.max_mz == 2000 assert encoder.dpi == 72
def load_model(): global clean_dirty_model global clean_dirty_encoder global graph share = S3Share(read_only=True) share.retrieve("clean_dirty", force=True) factory = MachineFactory() # get model and encoder as configured clean_dirty_model = factory.load_model() clean_dirty_encoder = factory.load_encoder() graph = tf.get_default_graph()
required=False, type=str, default=None) parser.add_argument("--dataset", help="path to your dataset", required=True, type=str) parser.add_argument("--configuration", help="which configuration file to use", required=True, type=str) parser.add_argument("--gpu", help="which gpu to use, by deault all will be utilized", type=int, default=-1) args = parser.parse_args() factory = MachineFactory(config_file=args.configuration) model = factory.load_model(name=args.model) if args.gpu < 0: factory.train(args.dataset, model=model, gpus=get_gpu_count()) else: os.environ['CUDA_VISIBLE_DEVICES'] = "{}".format(args.gpu) factory.train(args.dataset, model=model, gpus=1) # uploading dataset to cloud storage for reuse by other software share = S3Share() share.submit(args.dataset)
type=str) parser.add_argument("--configuration", help="which configuration file to use", required=False, type=str, default="machine.ini") parser.add_argument("--gpu", help="which gpu to use", type=int, default=-1) parser.add_argument("--model", help="model you would like to predict", required=False, type=str, default=None) args = parser.parse_args() factory = MachineFactory(config_file=args.configuration) model = factory.load_model(name=args.model) def callback(file, classname, full_path: str): if classname == 0: classname = "clean" else: classname = "dirty" print("{} is {}".format(file, classname)) os.makedirs("{}/{}".format("datasets/{}/sorted".format(args.dataset), classname), exist_ok=True) copyfile(
def test_train_model(): machine = MachineFactory() machine.train("datasets/clean_dirty", gpus=1)
def test_load_generator(): machine = MachineFactory() generator = machine.load_generator() assert isinstance(generator, LabelGenerator)