def channel_shift(self, shift): """Shift the response array indices with an integer number provided by input parameter 'shift'. :param shift: Number of channels to shift the spectrum with. :type shift: int """ # Check if input shift is indeed an integer if not isinstance(shift, int): message.error( "Entered shift is not an integer number. Not doing anything") return -1 ic1 = np.zeros(self.eg1.size, dtype=int) ic2 = np.zeros(self.eg2.size, dtype=int) for i in np.arange(self.eg1.size): ic1[i] = self.ic1[i] + shift ic2[i] = self.ic2[i] + shift if self.ic2[i] > np.amax(self.nchan): message.error( "Maximum channel number is larger than actual channel range!" ) print("Aborting shift.") return -1 # Save the shifted channel numbers self.ic1 = ic1 self.ic2 = ic2 return 0
def gaussrsp(x, mu, fwhm, dfwhm): """Gaussian response function, optionally as a linear function of energy. The inputs are the energy value to calculate the response for (x), the center of the Gauss function (mu), the resolution of the detector (FWHM in eV at 1 keV), and the gradient of the FWHM as a function of energy. :param x: X value to calculate response for. :type x: float :param mu: Center of the Gauss function. :type mu: float :param fwhm: The full-width at half maximum of the detector resolution (FWHM in eV at 1 keV). :type fwhm: float :param dfwhm: Gradient of the detector resolution as a function of energy. :type dfwhm: float """ # FWHM at the center energy of the response fwhm_mu = fwhm + dfwhm * (mu - 1.0) if fwhm_mu <= 0.: message.error( 'The FWHM has become (less than) 0 in the provided energy range. ' 'Please check your input gradient.') return -1 # Convert the FWHM to sigma sigma = fwhm_mu / (2.0 * math.sqrt(2.0 * math.log(2.0))) # Convert sigma to keV sigma = sigma * 1E-3 # Calculate the response value for this response element x resp = 1. / (sigma * math.sqrt(2. * math.pi)) * math.exp(-(x - mu)**2 / (2. * sigma**2)) return resp
def write_all_regions(self, spofile, resfile, exp_rate=False, overwrite=False, history=None): """Write all regions in the data object to spo and res. """ tspo = Spo() tres = Res() i = 0 for ireg in self.regions: tspo.add_spo_region(ireg.spo) tres.add_res_region(ireg.res, isector=self.config[i, 0], iregion=self.config[i, 1]) i = i + 1 stat = tspo.write_file(spofile, exp_rate=exp_rate, overwrite=overwrite, history=history) if stat != 0: message.error("Writing SPO file failed.") return 1 stat = tres.write_file(resfile, overwrite=overwrite, history=history) if stat != 0: message.error("Writing RES file failed.") return 1 return 0
def create_dummy(self, resp): """Generate dummy spectrum based on rmf channel information.""" if not isinstance(resp, Rmf): message.error( "Input response object is not the required Rmf object.") return # First copy the channel information to the PHA object self.Channel = resp.Channel self.FirstChannel = resp.Channel[0] self.DetChans = resp.NumberChannels # Generate a dummy spectrum (obviously not realistic, should be simulated in SPEX later) # Set exposure, statistic and type of spectrum self.Exposure = 1000.0 self.Poisserr = True self.Spectrumtype = 'TOTAL' # Generate spectrum values and quality flags self.Rate = np.ones(self.DetChans, dtype=float) / self.Exposure self.StatError = np.ones(self.DetChans, dtype=float) / self.Exposure self.SysError = np.zeros(self.DetChans, dtype=float) self.Quality = np.zeros(self.DetChans, dtype=float) self.Grouping = np.zeros(self.DetChans, dtype=float) self.AreaScaling = np.ones(self.DetChans, dtype=float) self.BackScaling = np.ones(self.DetChans, dtype=float)
def read_region(self, phafile, rmffile, bkgfile=None, arffile=None, corrfile=None, grouping=False): """Add an OGIP spectrum and response to a SPEX region. The pha and rmf file names are mandatory. If needed, a background file and effective area file can be added. :param phafile: Name of the PHA file to read. :type phafile: str :param rmffile: Name of the RMF file to read. :type rmffile: str :param bkgfile: Name of the background PHA file to read (optional). :type bkgfile: str :param arffile: Name of the ARF file to read (optional). :type arffile: str :param corrfile: Name of the Correction file to read (optional). :type corrfile: str :param grouping: Keep the grouping information? :type grouping: bool """ # Read the source PHA file self.read_source_pha(phafile) # Read the background PHA file if specified: if bkgfile is not None: self.read_background_pha(bkgfile) # Read a correction spectrum if specified: if corrfile is not None: self.read_corr(corrfile) # Read the response matrix self.read_rmf(rmffile) # Read the effective area if arffile is not None: self.read_arf(arffile) # Should the spectrum grouping remain? self.save_grouping = grouping if not self.input_back: self.back = None if not self.input_corr: self.corr = None if not self.input_area: self.area = None # Do the OGIP to SPEX conversion stat = self.ogip_to_spex() if stat != 0: message.error("OGIP to spex conversion failed.") return 1
def checkCompatibility(self, pha): """Check if another PHA object is compatible with the current one in terms of number of channels.""" # Check equal number of channels if self.DetChans != pha.DetChans: message.error("Number of channels not equal for both PHA files.") return 1 return 0
def combine_orders(self, grating): """Combine the orders for spectra from the same grating (1 = HETG, 2 = METG, 3 = LETG).""" # Select rows to combine tocombine = np.where(self.tg_part == grating)[0] if tocombine.size == 0: message.error("Grating number not found in dataset.") return 1 if tocombine.size == 1: message.error( "Only a single order found. No combining will be done.") return 1 # Create new PHA file to output (set first row as default). srcpha = self.phalist[tocombine[0]] bkgpha = Pha() bkgpha.StatError = np.zeros(srcpha.DetChans, dtype=float) for i in np.arange(tocombine.size): if i == 0: continue ipha = self.phalist[tocombine[i]] srcpha.Rate = srcpha.Rate + ipha.Rate bkgpha.Rate = srcpha.BackRate + ipha.BackRate for j in np.arange(srcpha.DetChans): if srcpha.StatError is not None: srcpha.StatError[j] = math.sqrt(srcpha.StatError[j]**2 + ipha.StatError[j]**2) bkgpha.StatError[j] = math.sqrt( srcpha.BackStatError[j]**2 + ipha.BackStatError[j]**2) srcpha.SysError[j] = math.sqrt(srcpha.SysError[j]**2 + ipha.SysError[j]**2) if ipha.Quality[j] != 0: srcpha.Quality = 1 # Remove grouping for now (maybe implemented later) srcpha.Grouping = 0 * srcpha.Grouping srcpha.AreaScaling = srcpha.AreaScaling + ipha.AreaScaling srcpha.BackScaling = srcpha.BackScaling + ipha.BackScaling # Calculate the average AreaScaling and BackScaling (Probably wrong!) srcpha.AreaScaling = srcpha.AreaScaling / tocombine.size srcpha.BackScaling = srcpha.BackScaling / tocombine.size bkgpha.AreaScaling = np.ones(srcpha.DetChans, dtype=float) bkgpha.BackScaling = srcpha.Pha2BackScal * np.ones(srcpha.DetChans, dtype=float) bkgpha.Quality = np.zeros(srcpha.DetChans, dtype=int) bkgpha.Exposure = srcpha.Exposure return srcpha, bkgpha
def check(self): """Check if the basic information is read in.""" if self.LowEnergy.size <= 0: message.error("Energy array has zero length.") return 1 if self.EffArea.size <= 0: message.error("Effective area array has zero length.") return 1 return 0
def read_rmf(self, rmffile): """Open rmf file containing the response matrix.""" message.proc_start("Read RMF response matrix") stat = self.resp.read(rmffile) if stat != 0: message.proc_end(stat) message.error("Unable to read RMF/RSP file.") return else: self.input_resp = True message.proc_end(stat)
def checkCompatibility(self, pha): """Check if another PHA object is compatible with the current one in terms of number of channels. :param pha: PHA object to check compatibility for. :type pha: pyspextools.io.pha.Pha """ # Check equal number of channels if self.DetChans != pha.DetChans: message.error("Number of channels not equal for both PHA files.") return 1 return 0
def checkCompatibility(self, arf): # Check if arf is really an Arf object if not isinstance(arf, Arf): message.error("Input arf is not an Arf class instance.") return 1 # Check if the size of the energy arrays is the same. if arf.LowEnergy.size != self.LowEnergy.size: message.error("Size of ARF and RMF are not the same.") return 1 # Check if the numbers of the high energy column are the same # Here we check the high values, because sometimes the first low value is different... if arf.HighEnergy[0] != self.HighEnergy[0]: message.error( "First high-energy boundaries of arrays are not the same.") return 1 # Check if the last values of the array are similar. size = arf.HighEnergy.size - 1 if arf.HighEnergy[size] != self.HighEnergy[size]: message.error( "Last high-energy boudaries of arrays are not the same.") return 1 return 0
def read_corr(self, corrfile): """Read correction file if specified.""" if corrfile is not None: message.proc_start("Read correction spectrum") stat = self.corr.read(corrfile) if stat != 0: message.proc_end(stat) message.error("Unable to read CORR file.") return else: message.proc_end(stat) self.input_corr = True else: message.error("No correction file specified.")
def read_arf(self, arffile): """Read arf file containing the effective area.""" if arffile is not None: message.proc_start("Read ARF effective area") stat = self.area.read(arffile) if stat != 0: message.proc_end(stat) message.error("Unable to read ARF file.") return else: self.input_area = True message.proc_end(stat) else: message.error("No effective area filename specified.")
def read_background_pha(self, bkgfile): """Open a pha file containing the background spectrum (if specified).""" if bkgfile is not None: message.proc_start("Read background PHA spectrum") stat = self.back.read(bkgfile) if stat != 0: message.proc_end(stat) message.error("Unable to read background PHA file.") return else: self.input_back = True message.proc_end(stat) else: message.error("No background filename specified.")
def checkCompatibility(self, arf): """Check whether the input arf object is really an ARF object with data and consistent with this RMF file. :param arf: Input arf object to check. :type arf: pyspextools.io.Arf """ # Check if arf is really an Arf object if not isinstance(arf, Arf): message.error("Input arf is not an Arf class instance.") return 1 # Check if the size of the energy arrays is the same. if arf.LowEnergy.size != self.matrix[0].LowEnergy.size: message.error("Size of ARF and RMF are not the same.") return 1 # Check if the numbers of the high energy column are the same # Here we check the high values, because sometimes the first low value is different... if arf.HighEnergy[0] != self.matrix[0].HighEnergy[0]: message.error("First high-energy boundaries of arrays are not the same.") return 1 # Check if the last values of the array are similar. size = arf.HighEnergy.size - 1 if arf.HighEnergy[size] != self.matrix[0].HighEnergy[size]: message.error("Last high-energy boundaries of arrays are not the same.") return 1 return 0
def update_config(self): self.config = np.empty(shape=[0, 2], dtype=int) pregion = 0 # Set previous region psector = 0 # Set previous sector for reg in self.regions: # Loop through components to find sector-region combinations if (reg.res.region[0] != pregion) or (reg.res.sector[0] != psector): self.config = np.append( self.config, [[reg.res.sector[0], reg.res.region[0]]], axis=0) pregion = reg.res.region[0] psector = reg.res.sector[0] else: message.error("Double sector and region identification.")
def write(self, arffile, telescop=None, instrume=None, filter=None, overwrite=False): '''Write an OGIP compatible ARF file (Non-grating format).''' # Write the ARF arrays into FITS column format col1 = fits.Column(name='ENERG_LO', format='D', unit=self.EnergyUnits, array=self.LowEnergy) col2 = fits.Column(name='ENERG_HI', format='D', unit=self.EnergyUnits, array=self.HighEnergy) col3 = fits.Column(name='SPECRESP', format='D', unit=self.ARFUnits, array=self.EffArea) hdu = fits.BinTableHDU.from_columns([col1, col2, col3]) hdr = hdu.header hdr.set('EXTNAME','SPECRESP') # Set the TELESCOP keyword (optional) if telescop == None: hdr.set('TELESCOP','None','Telescope name') else: hdr.set('TELESCOP',telescop,'Telescope name') # Set the INSTRUME keyword (optional) if instrume == None: hdr.set('INSTRUME','None','Instrument name') else: hdr.set('INSTRUME',instrume,'Instrument name') # Set the FILTER keyword (optional) if filter == None: hdr.set('FILTER','None','Filter setting') else: hdr.set('FILTER',filter,'Filter setting') hdr.set('DETNAM','None') hdr.set('HDUCLASS','OGIP') hdr.set('HDUCLAS1','RESPONSE') hdr.set('HDUCLAS2','SPECRESP') hdr.set('HDUVERS','1.1.0') hdr.set('ORIGIN','SRON') hdu.header['HISTORY'] = 'Created by pyspextools:' hdu.header['HISTORY'] = 'https://github.com/spex-xray/pyspextools' try: hdu.writeto(arffile, overwrite=overwrite) except IOError: message.error("File {0} already exists. I will not overwrite it!".format(arffile)) return 1 return 0
def read_source_pha(self, phafile): """Open a pha file containing the source spectrum.""" message.proc_start("Read source PHA spectrum") stat = self.spec.read(phafile) if stat != 0: message.proc_end(stat) message.error("Unable to read source PHA file.") return else: self.input_spec = True message.proc_end(stat) # Check if first channel of spectrum is zero: if self.spec.FirstChannel == 0: self.first_channel_zero = True else: self.first_channel_zero = False
def write_all_regions(self, spofile, resfile, exp_rate=True, overwrite=False, history=None): """Write all regions in the data object to spo and res. :param spofile: File name of the input .spo file. :type spofile: str :param resfile: File name of the input .res file. :type resfile: str :param exp_rate: Write an EXP_RATE column or not. :type exp_rate: bool :param overwrite: Should we overwrite existing files? :type overwrite: bool :param history: History information. :type history: List/Array of strings """ tspo = Spo() tres = Res() i = 0 for ireg in self.regions: tspo.add_spo_region(ireg.spo) tres.add_res_region(ireg.res, isector=self.config[i, 0], iregion=self.config[i, 1]) i = i + 1 stat = tspo.write_file(spofile, exp_rate=exp_rate, overwrite=overwrite, history=history) if stat != 0: message.error("Writing SPO file failed.") return 1 stat = tres.write_file(resfile, overwrite=overwrite, history=history) if stat != 0: message.error("Writing RES file failed.") return 1 return 0
def check(self): """Check the RMF for internal consistency.""" if self.ebounds.NumberChannels <= 0: message.error("Number of Channels in response is zero.") return 1 for e in range(self.NumberMatrixExt): if self.matrix[e].NumberEnergyBins <= 0: message.error("Number of Energy bins in response is zero.") return 1 c = 0 r = 0 # Check if matrix array is consistent with the indexing for i in np.arange(self.matrix[e].NumberEnergyBins): for j in np.arange(self.matrix[e].NumberGroups[i]): for k in np.arange(self.matrix[e].NumberChannelsGroup[c]): r = r + 1 c = c + 1 if r != self.matrix[e].Matrix.size: message.error("Matrix size does not correspond to index arrays. Response inconsistent.") return 1 return 0
def check(self, nregion=False): """Check whether spectrum and response are compatible and whether the arrays really consist of one region (if nregion flag is set). :param nregion: Flag to check whether the arrays just contain one region. :type nregion: bool """ if self.res.nchan[0] != self.spo.nchan[0]: message.error( "Number of channels in spectrum is not equal to number of channels in response." ) return -1 if nregion: if self.spo.nchan.size != 1: message.error( "SPO object consists of more than one region according to nchan array size." ) return -1 if self.spo.nregion != 1: message.error( "SPO object consists of more than one region according to nregion parameter." ) return -1 return 0
def read_region(self, pha2file, rmflist, arflist, grating, bkgsubtract=True): """Add a Chandra spectrum and response to a SPEX region. The pha2 file and the rmf and arf file lists are mandatory. The grating option can be either HETG, METG or LETG""" self.grating = grating # Read the PHA2 file for a particular grating (src, bkg) = self.__read_pha2(pha2file, grating, bkgsubtract=bkgsubtract) if not isinstance(src,Pha): message.error("Failed to read spectrum file.") return 1 # Convert the PHA2 file to spo rmf = Rmf() rmf.read(rmflist[0]) self.spo = pha_to_spo(src, rmf, back=bkg) if not isinstance(self.spo,Spo): message.error("Failed to convert spectrum file.") return 1 # Convert the responses to res self.res = self.__rmflist_to_res(rmflist, arflist) if not isinstance(self.res,Res): message.error("Failed to combine and convert response files.") return 1 self.label = grating return 0
def __rmflist_to_res(self, rmflist, arflist): """Convert a list of compatible rmf and arf file into one res file. This is convenient for combining responses that are provided separately, like the Transmission Grating spectra from Chandra.""" if len(rmflist) != len(arflist): message.error("ARF list and RMF list do not have the same length.") return 0 rmfobjs = np.zeros(len(rmflist), dtype=object) arfobjs = np.zeros(len(arflist), dtype=object) rmf_orders = np.zeros(len(rmflist), dtype=int) arf_orders = np.zeros(len(arflist), dtype=int) i = 0 for file in rmflist: message.proc_start("Reading response for order") rmf = Rmf() rmf.read(file) rmf_orders[i] = rmf.Order print(str(rmf_orders[i])+" ", end='') if len(np.where(rmf_orders == rmf.Order)) != 1: message.error("There are two response files with the same order.") message.proc_end(1) return 1 else: rmfobjs[i] = rmf message.proc_end(0) i = i + 1 i=0 for file in arflist: message.proc_start("Reading effective area for order") arf = Arf() arf.read(file) arf_orders[i] = arf.Order print(str(arf_orders[i])+" ", end='') if len(np.where(arf_orders == arf.Order)) != 1: message.error("There are two effective area files for the same order.") message.proc_end(1) return 1 else: arfobjs[i] = arf message.proc_end(0) i = i + 1 arfsort = np.argsort(arf_orders) rmfsort = np.argsort(rmf_orders) # Calculate first response: res = rmf_to_res(rmfobjs[rmfsort[0]],arf=arfobjs[arfsort[0]]) # Append the components from the other responses for i in np.arange(len(rmfsort)-1)+1: restmp = rmf_to_res(rmfobjs[rmfsort[i]],arf=arfobjs[arfsort[i]]) res.append_component(restmp) return res
def __read_pha2(self, pha2file, grating, bkgsubtract=True): """Method to read a PHA type II file. :param pha2file: PHA type II file name to read. :type pha2file: str :param grating: Name of the grating to read (HETG, METG or LETG). :type grating: str :param bkgsubtract: Subtract the background? :type bkgsubtract: bool """ # Initialize PHA2 file type spec = Pha2() # Is the source spectrum there? message.proc_start("Read source spectrum") if os.path.isfile(pha2file): stat = spec.read(pha2file, background=bkgsubtract) if stat != 0: message.proc_end(stat) message.error("Failed to read source spectrum.") return 1 else: message.proc_end(stat) else: message.proc_end(1) message.error( "Spectrum file {0} not found in path.".format(pha2file)) return 1 # Convert grating name to number if grating == 'HETG': ngrating = 1 elif grating == 'METG': ngrating = 2 elif grating == 'LETG': ngrating = 3 else: message.error("Unsupported grating: '{0}'.".format(grating)) return 1 # Combine spectra from a single grating message.proc_start("Combining orders of the spectrum") (src, bkg) = spec.combine_orders(ngrating) if isinstance(src, Pha) and isinstance(bkg, Pha): message.proc_end(0) else: message.proc_end(1) return 1 return src, bkg
def check(self): """Check if the object contains the minimum required data.""" # Check exposure value if self.Exposure <= 0.0: message.error("Exposure time of spectrum is zero or smaller.") return 1 if self.DetChans <= 0: message.error("Number of channels is zero.") return 1 if self.Rate.size <= 0: message.error("Size of rate array is zero.") return 1 return 0
def read_region(self, pha2file, rmflist, arflist, grating, bkgsubtract=True): """Add a Chandra spectrum and response to a SPEX region. The pha2 file and the rmf and arf file lists are mandatory. The grating option can be either HETG, METG or LETG. :param pha2file: PHA2 file name to read. :type pha2file: str :param rmflist: List of RMF response files. :type rmflist: list :param arflist: List of ARF effective area files. :type arflist: list :param grating: Grating name. :type grating: str :param bkgsubtract: Subtract the background? :type bkgsubtract: bool """ self.grating = grating # Read the PHA2 file for a particular grating (src, bkg) = self.__read_pha2(pha2file, grating, bkgsubtract=bkgsubtract) if not isinstance(src, Pha): message.error("Failed to read spectrum file.") return 1 # Convert the PHA2 file to spo rmf = Rmf() rmf.read(rmflist[0]) self.spo = pha_to_spo(src, rmf, back=bkg) if not isinstance(self.spo, Spo): message.error("Failed to convert spectrum file.") return 1 # Convert the responses to res self.res = self.__rmflist_to_res(rmflist, arflist) if not isinstance(self.res, Res): message.error("Failed to combine and convert response files.") return 1 self.label = grating return 0
def write(self, rmffile, telescop=None, instrume=None, filterkey=None, overwrite=False): """Method to write an OGIP format RMF file. :param rmffile: RMF file name to write. :type rmffile: str :param telescop: Name of the telescope to be put in the TELESCOP keyword. :type telescop: str :param instrume: Name of the instrument to be put in the INSTRUME keyword. :type instrume: str :param filterkey: Name of the filter to be put in the FILTER keyword. :type filterkey: str :param overwrite: Overwrite existing file names? (True/False) :type overwrite: bool """ # # Generate warning if there are multiple groups per energy # if np.amax(self.matrix[0].NumberGroups) != 1: message.warning("This method has not been tested for responses with multiple response groups per energy.") # # Create Primary HDU # primary = fits.PrimaryHDU() # # Create the EBOUNDS extension # ecol1 = fits.Column(name='CHANNEL', format='J', array=self.ebounds.Channel) ecol2 = fits.Column(name='E_MIN', format='D', unit=self.ebounds.EnergyUnits, array=self.ebounds.ChannelLowEnergy) ecol3 = fits.Column(name='E_MAX', format='D', unit=self.ebounds.EnergyUnits, array=self.ebounds.ChannelHighEnergy) ebnds = fits.BinTableHDU.from_columns([ecol1, ecol2, ecol3]) ehdr = ebnds.header ehdr.set('EXTNAME', 'EBOUNDS') ehdr.set('DETCHANS', self.ebounds.NumberChannels) # Set the TELESCOP keyword (optional) if telescop is None: ehdr.set('TELESCOP', 'None', 'Telescope name') else: ehdr.set('TELESCOP', telescop, 'Telescope name') # Set the INSTRUME keyword (optional) if instrume is None: ehdr.set('INSTRUME', 'None', 'Instrument name') else: ehdr.set('INSTRUME', instrume, 'Instrument name') # Set the FILTER keyword (optional) if filterkey is None: ehdr.set('FILTER', 'None', 'Filter setting') else: ehdr.set('FILTER', filterkey, 'Filter setting') ehdr.set('DETNAM ', 'None') ehdr.set('CHANTYPE', 'PI') ehdr.set('HDUCLASS', 'OGIP') ehdr.set('HDUCLAS1', 'RESPONSE') ehdr.set('HDUCLAS2', 'EBOUNDS ') ehdr.set('HDUVERS1', '1.2.0') ehdr.set('ORIGIN ', 'SRON') hdu = fits.HDUList([primary, ebnds]) # # Create SPECRESP MATRIX extension # for e in range(self.NumberMatrixExt): print("Writing matrix for matrix number: {0}".format(e)) mcol1 = fits.Column(name='ENERG_LO', format='D', unit=self.matrix[e].EnergyUnits, array=self.matrix[e].LowEnergy) mcol2 = fits.Column(name='ENERG_HI', format='D', unit=self.matrix[e].EnergyUnits, array=self.matrix[e].HighEnergy) mcol3 = fits.Column(name='N_GRP', format='J', array=self.matrix[e].NumberGroups) mcol4 = fits.Column(name='F_CHAN', format='J', array=self.matrix[e].FirstChannelGroup) mcol5 = fits.Column(name='N_CHAN', format='J', array=self.matrix[e].NumberChannelsGroup) # Determine the width of the matrix width = np.amax(self.matrix[e].NumberChannelsGroup) formatstr = str(width)+'D' # # THIS PART COULD BE UPDATED TO OPTIMIZE THE SIZE USING VARIABLE SIZE ARRAYS IN FITS. # # Building the MATRIX column newmatrix = np.zeros(self.matrix[e].NumberEnergyBins * width, dtype=float).reshape(self.matrix[e].NumberEnergyBins, width) re = 0 for i in np.arange(self.matrix[e].NumberEnergyBins): for j in np.arange(self.matrix[e].NumberGroups[i]): for k in np.arange(self.matrix[e].NumberChannelsGroup[i]): newmatrix[i, k] = self.matrix[e].Matrix[re] re = re + 1 mcol6 = fits.Column(name='MATRIX', format=formatstr, array=newmatrix) matrix = fits.BinTableHDU.from_columns([mcol1, mcol2, mcol3, mcol4, mcol5, mcol6]) mhdr = matrix.header if self.matrix[e].AreaIncluded: mhdr.set('EXTNAME', 'SPECRESP MATRIX') else: mhdr.set('EXTNAME', 'MATRIX') # Set the TELESCOP keyword (optional) if telescop is None: mhdr.set('TELESCOP', 'None', 'Telescope name') else: mhdr.set('TELESCOP', telescop, 'Telescope name') # Set the INSTRUME keyword (optional) if instrume is None: mhdr.set('INSTRUME', 'None', 'Instrument name') else: mhdr.set('INSTRUME', instrume, 'Instrument name') # Set the FILTER keyword (optional) if filterkey is None: mhdr.set('FILTER', 'None', 'Filter setting') else: mhdr.set('FILTER', filterkey, 'Filter setting') mhdr.set('DETCHANS', self.ebounds.NumberChannels) mhdr.set('LO_THRES', self.matrix[e].ResponseThreshold) mhdr.set('CHANTYPE', 'PI') mhdr.set('HDUCLASS', 'OGIP') mhdr.set('HDUCLAS1', 'RESPONSE') mhdr.set('HDUCLAS2', 'RSP_MATRIX') if self.matrix[e].AreaIncluded: mhdr.set('HDUCLAS3', 'FULL') else: mhdr.set('HDUCLAS3', 'REDIST') mhdr.set('HDUVERS1', '1.3.0') mhdr.set('ORIGIN ', 'SRON') matrix.header['HISTORY'] = 'Created by pyspextools:' matrix.header['HISTORY'] = 'https://github.com/spex-xray/pyspextools' hdu.append(matrix) try: hdu.writeto(rmffile, overwrite=overwrite) except IOError: message.error("File {0} already exists. I will not overwrite it!".format(rmffile)) return 1 return 0
def read(self, rmfhdu): # Read the Matrix table data = rmfhdu.data header = rmfhdu.header if rmfhdu.name == 'MATRIX': pass elif rmfhdu.name == 'SPECRESP MATRIX': message.warning("This is an RSP file with the effective area included.") print("Do not read an ARF file, unless you know what you are doing.") self.AreaIncluded = True else: message.error("MATRIX extension not successfully found in RMF file.") return self.LowEnergy = data['ENERG_LO'] self.HighEnergy = data['ENERG_HI'] self.NumberEnergyBins = self.LowEnergy.size self.EnergyUnits = header['TUNIT1'] self.NumberGroups = data['N_GRP'] self.NumberTotalGroups = np.sum(self.NumberGroups) self.FirstGroup = np.zeros(self.NumberEnergyBins, dtype=int) self.FirstChannelGroup = np.zeros(self.NumberTotalGroups, dtype=int) self.NumberChannelsGroup = np.zeros(self.NumberTotalGroups, dtype=int) self.FirstElement = np.zeros(self.NumberTotalGroups, dtype=int) self.Matrix = np.array([], dtype=float) try: self.Order = header['ORDER'] except KeyError: pass fgroup = 0 # Count total number of groups felem = 0 # Count total number of response elements nelem = np.zeros(self.NumberEnergyBins, dtype=int) # Count number of response elements per energy bin k = 0 fchan_local = data['F_CHAN'] nchan_local = data['N_CHAN'] matrix_local = data['MATRIX'] for i in np.arange(self.NumberEnergyBins): self.FirstGroup[i] = fgroup fgroup = fgroup + self.NumberGroups[i] if self.NumberGroups[i] != 0: for j in np.arange(self.NumberGroups[i]): try: self.FirstChannelGroup[k] = fchan_local[i][j] self.NumberChannelsGroup[k] = nchan_local[i][j] except IndexError: self.FirstChannelGroup[k] = fchan_local[i] self.NumberChannelsGroup[k] = nchan_local[i] self.FirstElement[k] = felem felem = felem + self.NumberChannelsGroup[k] nelem[i] = nelem[i] + self.NumberChannelsGroup[k] k = k + 1 self.Matrix = np.zeros(felem, dtype=float) r = 0 for i in np.arange(self.NumberEnergyBins): if nelem[i] != 0: for j in np.arange(nelem[i]): self.Matrix[r] = matrix_local[i][j] r = r + 1 self.NumberTotalElements = self.Matrix.size self.ResponseThreshold = np.amin(self.Matrix)
def check(self): """Perform a number of checks to see if the response information is consistent.""" # Check if the number of indexed channels is equal to the length of the response array if sum(self.nc) != self.resp.size: print("") message.error("Number of indexed channels not equal to response array.") print("Sum of channels in group: {0}".format(sum(self.nc))) print("Length of response array: {0}".format(self.resp.size)) return -1 # Check if the channel start and end bin are consistent with the number of channels for j in np.arange(len(self.neg)): check = self.ic2[j] - self.ic1[j] + 1 if check != self.nc[j]: message.error("Number of group channels not consistent.") return -1 # Check if energy grid is monotonous k = 0 for i in np.arange(self.ncomp): for j in np.arange(self.neg[i]): if self.eg1[k] >= self.eg2[k]: message.error("Energy bin size is not positive for" "bin {0} of component {1}.".format(j, i)) return -1 if j > 1: if self.eg1[k] < self.eg1[k-1]: message.error("Energy grid is not increasing for" "bin {0} of component {1}.".format(j, i)) return -1 if self.nc[k] > 0 and self.ic1[k] < 1: message.error("For row {0} the first channel is {1}, which is not allowed.".format(k,self.ic1[k])) return -1 elif self.nc[k] > 0 and self.ic2[k] > self.nchan[i]: message.error("For row {0} the last channel is larger than the number of channels.".format(k)) return -1 elif self.ic2[k] < self.ic1[k]: message.error("For row {0} the last channel is smaller than the first channel.".format(k)) return -1 elif self.nc[k] > 0 and self.nc[k] != self.ic2[k] - self.ic1[k] + 1: message.error("For row {0} the number of channels does not match the limits.".format(k)) return -1 k = k + 1 for i in np.arange(self.resp.size): if self.resp[i] < 0.0: message.error("Negative response value detected in matrix.") return -1 return 0
def clean_region(reg): """Remove bad channels and channels with zero response from the region. :param reg: Input Region object. :type reg: pyspextools.io.Region """ if not isinstance(reg, Region): message.error("The input object is not of type Region.") return -1 if reg.spo.empty: message.error("The input spo object is empty.") return -1 if reg.res.empty: message.error("The input spo object is empty.") return -1 message.proc_start("Identify bad channels in spectrum and response matrix and re-index matrix") (chanmask, groupmask, respmask) = __get_bad_channel_masks(reg) if not isinstance(chanmask, np.ndarray): return -1 message.proc_end(0) # Print number of good and bad channels goodchan = np.sum(chanmask) badchan = chanmask.size - goodchan print("Number of good channels: {0}".format(goodchan)) print("Number of bad channels: {0}".format(badchan)) if goodchan == 0: message.error("All channels appear to be bad. Please check your input files.") return -1 message.proc_start("Removing bad channels from spectral region") # Fix binning issues first. Make sure bin ends before bad channel and starts after bad channel. for i in np.arange(reg.spo.nchan): if not chanmask[i]: if i != 0: reg.spo.last[i-1] = True if i != reg.spo.nchan - 1: reg.spo.first[i+1] = True spo = reg.spo spo.echan1 = reg.spo.echan1[chanmask] spo.echan2 = reg.spo.echan2[chanmask] spo.tints = reg.spo.tints[chanmask] spo.ochan = reg.spo.ochan[chanmask] spo.dochan = reg.spo.dochan[chanmask] spo.mbchan = reg.spo.mbchan[chanmask] spo.dbchan = reg.spo.dbchan[chanmask] spo.brat = reg.spo.brat[chanmask] spo.ssys = reg.spo.ssys[chanmask] spo.bsys = reg.spo.bsys[chanmask] spo.used = reg.spo.used[chanmask] spo.first = reg.spo.first[chanmask] spo.last = reg.spo.last[chanmask] # Count the number of good channels for i in np.arange(spo.nregion): spo.nchan[i] = np.sum(chanmask) # Check the consistency of the new object stat = spo.check() # Show result to user message.proc_end(stat) # Copy the filtered object to the original region reg.spo = spo # Print number of good and bad groups badgroup = groupmask.size - np.sum(groupmask) print("Number of original groups: {0}".format(groupmask.size)) print("Number of zero-response groups: {0}".format(badgroup)) # Print number of removed response elements badelements = respmask.size - np.sum(respmask) print("Number of original response elements: {0}".format(respmask.size)) print("Number of bad response elements: {0}".format(badelements)) message.proc_start("Removing bad channels from response matrix") # Mask response array reg.res.resp = reg.res.resp[respmask] if reg.res.resp_der: reg.res.dresp = reg.res.dresp[respmask] # Mask group arrays reg.res.eg1 = reg.res.eg1[groupmask] reg.res.eg2 = reg.res.eg2[groupmask] reg.res.ic1 = reg.res.ic1[groupmask] reg.res.ic2 = reg.res.ic2[groupmask] reg.res.nc = reg.res.nc[groupmask] if reg.res.area_scal: reg.res.relarea = reg.res.relarea[groupmask] eg_start = 0 for icomp in np.arange(reg.res.ncomp): reg.res.nchan[icomp] = np.sum(chanmask) eg_end = reg.res.neg[icomp] + eg_start reg.res.neg[icomp] = np.sum(groupmask[eg_start:eg_end]) eg_start = eg_end + 1 stat = reg.res.check() message.proc_end(stat) return reg