def loop(self, d_idx, s_idx, d_au, d_av, d_aw, d_ae, s_au, s_av, s_aw, d_u0, d_v0, d_w0, s_u0, s_v0, s_w0, d_u, d_v, d_w, s_u, s_v, s_w, d_p, d_rho, s_p, s_rho): gamma = self.gamma d = declare('int') d = self.dim auij, delu = declare('matrix(3)', 2) auij[0] = d_au[d_idx] - s_au[s_idx] auij[1] = d_av[d_idx] - s_av[s_idx] auij[2] = d_aw[d_idx] - s_aw[s_idx] delu[0] = s_u0[s_idx] + s_u[s_idx] - d_u0[d_idx] - d_u[d_idx] delu[1] = s_v0[s_idx] + s_v[s_idx] - d_v0[d_idx] - d_v[d_idx] delu[2] = s_w0[s_idx] + s_w[s_idx] - d_w0[d_idx] - d_w[d_idx] aeij = dot(delu, auij, d) si = d_p[d_idx]/((d_rho[d_idx])**gamma) sj = s_p[s_idx]/((s_rho[s_idx])**gamma) smin = min(abs(si), abs(sj)) smax = max(abs(si), abs(sj)) fij = 0.5 sdiff = si - sj if sdiff * aeij > 0: fij = smin/(smin + smax) elif sdiff * aeij < 0: fij = smax/(smin + smax) d_ae[d_idx] += 0.5*fij * aeij
def loop(self, d_idx, s_idx, d_au, d_av, d_aw, d_ae, s_au, s_av, s_aw, d_u0, d_v0, d_w0, s_u0, s_v0, s_w0, d_u, d_v, d_w, s_u, s_v, s_w, d_p, d_rho, s_p, s_rho, d_m, d_V, s_V, d_cs, s_cs, d_h, s_h, XIJ, d_gradv, s_gradv, EPS, DWIJ): Cl = self.cl Cq = self.cq eta_fold = self.eta_fold eta_crit = self.eta_crit mi = d_m[d_idx] Vi = 1.0 / d_V[d_idx] Vj = 1.0 / s_V[s_idx] pi = d_p[d_idx] pj = s_p[s_idx] rhoi = d_rho[d_idx] rhoj = s_rho[s_idx] ci = d_cs[d_idx] cj = s_cs[s_idx] hi = d_h[d_idx] hj = s_h[s_idx] alp, bet, i, d = declare('int', 4) uijhat, tmpdvxij = declare('matrix(3)', 2) d = self.dim tmpri = 0.0 tmprj = 0.0 for alp in range(d): for bet in range(d): tmpri += d_gradv[d * d * d_idx + d * alp + bet] * XIJ[alp] * XIJ[bet] tmprj += s_gradv[d * d * s_idx + d * alp + bet] * XIJ[alp] * XIJ[bet] rij = tmpri / tmprj tmprij = min(1, 4 * rij / ((1 + rij) * (1 + rij))) phiij = max(0, tmprij) tmpxij = dot(XIJ, XIJ, d) tmpxij2 = sqrt(tmpxij) etai_scalar = tmpxij2 / hi etaj_scalar = tmpxij2 / hj etaij = min(etai_scalar, etaj_scalar) if etaij < eta_crit: tmpphi = (etaij - eta_crit) / eta_fold phiij = phiij * exp(-tmpphi * tmpphi) for alp in range(d): s = 0.0 for bet in range(d): s += (d_gradv[d * d * d_idx + d * alp + bet] + s_gradv[d * d * s_idx + d * alp + bet]) * XIJ[bet] tmpdvxij[alp] = s uijhat[0] = d_u0[d_idx] - s_u0[s_idx] - 0.5 * phiij * tmpdvxij[0] uijhat[1] = d_v0[d_idx] - s_v0[s_idx] - 0.5 * phiij * tmpdvxij[1] uijhat[2] = d_w0[d_idx] - s_w0[s_idx] - 0.5 * phiij * tmpdvxij[2] tmpmui = dot(uijhat, XIJ, d) / (tmpxij / hi + EPS * hi) mui = min(0, tmpmui) tmpmuj = dot(uijhat, XIJ, d) / (tmpxij / hi + EPS * hj) muj = min(0, tmpmuj) Qi = rhoi * (-Cl * ci * mui + Cq * mui * mui) Qj = rhoj * (-Cl * cj * muj + Cq * muj * muj) fac = -(1.0 / mi) * Vi * Vj * (pi + pj + Qi + Qj) gamma = self.gamma d = self.dim auij, delu = declare('matrix(3)', 2) auij[0] = fac * DWIJ[0] auij[1] = fac * DWIJ[1] auij[2] = fac * DWIJ[2] delu[0] = s_u0[s_idx] + s_u[s_idx] - d_u0[d_idx] - d_u[d_idx] delu[1] = s_v0[s_idx] + s_v[s_idx] - d_v0[d_idx] - d_v[d_idx] delu[2] = s_w0[s_idx] + s_w[s_idx] - d_w0[d_idx] - d_w[d_idx] aeij = dot(delu, auij, d) si = d_p[d_idx] / ((d_rho[d_idx])**gamma) sj = s_p[s_idx] / ((s_rho[s_idx])**gamma) smin = min(abs(si), abs(sj)) smax = max(abs(si), abs(sj)) fij = 0.5 sdiff = si - sj if sdiff * aeij > 0: fij = smin / (smin + smax) elif sdiff * aeij < 0: fij = smax / (smin + smax) d_ae[d_idx] += 0.5 * fij * aeij
def loop(self, d_idx, s_idx, d_m, s_m, d_rho, s_rho, d_p, s_p, d_cs, s_cs, d_u, d_v, d_w, s_u, s_v, s_w, d_gradv, s_gradv, d_h, s_h, s_ai, s_bi, s_gradai, s_gradbi, d_au, d_av, d_aw, d_V, s_V, XIJ, VIJ, DWIJ, EPS, HIJ, WIJ, DWI, DWJ): Cl = self.cl Cq = self.cq eta_fold = self.eta_fold eta_crit = self.eta_crit mi = d_m[d_idx] Vi = 1.0 / d_V[d_idx] Vj = 1.0 / s_V[s_idx] pi = d_p[d_idx] pj = s_p[s_idx] rhoi = d_rho[d_idx] rhoj = s_rho[s_idx] ci = d_cs[d_idx] cj = s_cs[s_idx] hi = d_h[d_idx] hj = s_h[s_idx] alp, bet, i, d = declare('int', 4) uijhat, tmpdvxij = declare('matrix(3)', 2) d = self.dim tmpri = 0.0 tmprj = 0.0 for alp in range(d): for bet in range(d): tmpri += d_gradv[d * d * d_idx + d * alp + bet] * XIJ[alp] * XIJ[bet] tmprj += s_gradv[d * d * s_idx + d * alp + bet] * XIJ[alp] * XIJ[bet] rij = tmpri / tmprj tmprij = min(1, 4 * rij / ((1 + rij) * (1 + rij))) phiij = max(0, tmprij) tmpxij = dot(XIJ, XIJ, d) tmpxij2 = sqrt(tmpxij) etai_scalar = tmpxij2 / hi etaj_scalar = tmpxij2 / hj etaij = min(etai_scalar, etaj_scalar) if etaij < eta_crit: tmpphi = (etaij - eta_crit) / eta_fold phiij = phiij * exp(-tmpphi * tmpphi) for alp in range(d): s = 0.0 for bet in range(d): s += (d_gradv[d * d * d_idx + d * alp + bet] + s_gradv[d * d * s_idx + d * alp + bet]) * XIJ[bet] tmpdvxij[alp] = s uijhat[0] = d_u[d_idx] - s_u[s_idx] - 0.5 * phiij * tmpdvxij[0] uijhat[1] = d_v[d_idx] - s_v[s_idx] - 0.5 * phiij * tmpdvxij[1] uijhat[2] = d_w[d_idx] - s_w[s_idx] - 0.5 * phiij * tmpdvxij[2] tmpmui = dot(uijhat, XIJ, d) / (tmpxij / hi + EPS * hi) mui = min(0, tmpmui) tmpmuj = dot(uijhat, XIJ, d) / (tmpxij / hi + EPS * hj) muj = min(0, tmpmuj) Qi = rhoi * (-Cl * ci * mui + Cq * mui * mui) Qj = rhoj * (-Cl * cj * muj + Cq * muj * muj) fac = -(1.0 / mi) * Vi * Vj * (pi + pj + Qi + Qj) d_au[d_idx] += fac * DWIJ[0] d_av[d_idx] += fac * DWIJ[1] d_aw[d_idx] += fac * DWIJ[2]
def loop_all(self, d_idx, d_x, d_y, d_z, d_h, s_x, s_y, s_z, s_h, s_m, s_rho, SPH_KERNEL, NBRS, N_NBRS, d_ai, d_gradai, d_bi, s_V, d_gradbi): x = d_x[d_idx] y = d_y[d_idx] z = d_z[d_idx] h = d_h[d_idx] i, j, k, s_idx, d, d2 = declare('int', 6) alp, bet, gam, phi, psi = declare('int', 5) xij = declare('matrix(3)') dwij = declare('matrix(3)') d = self.dim d2 = d * d m0 = 0.0 m1 = declare('matrix(3)') m2 = declare('matrix(9)') temp_vec = declare('matrix(3)') temp_aug_m2 = declare('matrix(18)') m2inv = declare('matrix(9)') grad_m0 = declare('matrix(3)') grad_m1 = declare('matrix(9)') grad_m2 = declare('matrix(27)') ai = 0.0 bi = declare('matrix(3)') grad_ai = declare('matrix(3)') grad_bi = declare('matrix(9)') for i in range(3): m1[i] = 0.0 grad_m0[i] = 0.0 bi[i] = 0.0 grad_ai[i] = 0.0 for j in range(3): m2[3 * i + j] = 0.0 grad_m1[3 * i + j] = 0.0 grad_bi[3 * i + j] = 0.0 for k in range(3): grad_m2[9 * i + 3 * j + k] = 0.0 for i in range(N_NBRS): s_idx = NBRS[i] xij[0] = x - s_x[s_idx] xij[1] = y - s_y[s_idx] xij[2] = z - s_z[s_idx] hij = (h + s_h[s_idx]) * 0.5 rij = sqrt(xij[0] * xij[0] + xij[1] * xij[1] + xij[2] * xij[2]) wij = SPH_KERNEL.kernel(xij, rij, hij) SPH_KERNEL.gradient(xij, rij, hij, dwij) V = 1.0 / s_V[s_idx] m0 += V * wij for alp in range(d): m1[alp] += V * wij * xij[alp] for bet in range(d): m2[d * alp + bet] += V * wij * xij[alp] * xij[bet] for gam in range(d): grad_m0[gam] += V * dwij[gam] for alp in range(d): fac = 1.0 if alp == gam else 0.0 temp = (xij[alp] * dwij[gam] + fac * wij) grad_m1[d * gam + alp] += V * temp for bet in range(d): fac2 = 1.0 if bet == gam else 0.0 temp = xij[alp] * fac2 + xij[bet] * fac temp2 = (xij[alp] * xij[bet] * dwij[gam] + temp * wij) grad_m2[d2 * gam + d * alp + bet] += V * temp2 identity(m2inv, d) augmented_matrix(m2, m2inv, d, d, d, temp_aug_m2) # If is_singular > 0 then matrix was singular is_singular = gj_solve(temp_aug_m2, d, d, m2inv) if is_singular > 0.0: # Cannot do much if the matrix is singular. Perhaps later # we can tag such particles to see if the user can do something. pass else: mat_vec_mult(m2inv, m1, d, temp_vec) # Eq. 12. ai = 1.0 / (m0 - dot(temp_vec, m1, d)) # Eq. 13. mat_vec_mult(m2inv, m1, d, bi) for gam in range(d): bi[gam] = -bi[gam] # Eq. 14. and 15. for gam in range(d): temp1 = grad_m0[gam] for alp in range(d): temp2 = 0.0 for bet in range(d): temp1 -= m2inv[d * alp + bet] * ( m1[bet] * grad_m1[d * gam + alp] + m1[alp] * grad_m1[d * gam + bet]) temp2 -= (m2inv[d * alp + bet] * grad_m1[d * gam + bet]) for phi in range(d): for psi in range(d): temp1 += (m2inv[d * alp + phi] * m2inv[d * psi + bet] * grad_m2[d2 * gam + d * phi + psi] * m1[bet] * m1[alp]) temp2 += (m2inv[d * alp + phi] * m2inv[d * psi + bet] * grad_m2[d2 * gam + d * phi + psi] * m1[bet]) grad_bi[d * gam + alp] = temp2 grad_ai[gam] = -ai * ai * temp1 if N_NBRS < 2 or is_singular > 0.0: d_ai[d_idx] = 1.0 for i in range(d): d_gradai[d * d_idx + i] = 0.0 d_bi[d * d_idx + i] = 0.0 for j in range(d): d_gradbi[d2 * d_idx + d * i + j] = 0.0 else: d_ai[d_idx] = ai for i in range(d): d_gradai[d * d_idx + i] = grad_ai[i] d_bi[d * d_idx + i] = bi[i] for j in range(d): d_gradbi[d2 * d_idx + d * i + j] = grad_bi[d * i + j]