alm_mask_hp_mw = mm.lm_hp2lm(alm_mask_hp, L_hp) alm_E_hp_mw = mm.lm_hp2lm(alm_E_hp, L_hp) alm_B_hp_mw = mm.lm_hp2lm(alm_B_hp, L_hp) mask_mw = ssht.inverse(alm_mask_hp_mw, L_hp, Reality=True) kappa_E_map_hp_rec_mw = ssht.inverse(alm_E_hp_mw, L_hp, Reality=True) kappa_B_map_hp_rec_mw = ssht.inverse(alm_B_hp_mw, L_hp, Reality=True) mask_mw[mask_mw < 0.5] = np.nan k_hp_mw = kappa_E_map_hp_rec_mw + 1j * kappa_B_map_hp_rec_mw k_mw_north_real, mask_north_real, k_mw_south_real, mask_south_real, \ k_mw_north_imag, mask_north_imag, k_mw_south_imag, mask_south_imag \ = ssht.polar_projection(k_hp_mw*mask_mw, L_hp, resolution=250, Method="MW", zoom_region=zoom_region,\ rot=[np.radians(alpha),np.radians(beta),np.radians(g)], Projection="SP") RA_lines_1, RA_lines_2, dec_lines_1, dec_lines_2 = sterio_grid_lines( resolution=250, zoom_region=zoom_region) fig, ax = plt.subplots() imgplot = ax.imshow(k_mw_south_real, interpolation='nearest', vmin=-0.015, vmax=0.015, cmap="cubehelix") plt.colorbar(imgplot) ax.imshow(mask_south_real, interpolation='nearest', cmap=cm.gray, vmin=-1.,
# plt.colorbar(im) # plt.figure() # im = plt.imshow(kappa_plane.imag) # plt.colorbar(im) # plt.show() if do_half_sky_proj: for Projection, zoom_region in zip(Projection_array, zoom_region_array): print "Doing Projection ", Projection # project gamma proj_north_real, mask_north_real, proj_south_real, mask_south_real,\ proj_north_imag, mask_north_imag, proj_south_imag, mask_south_imag\ = ssht.polar_projection(gamma, L, resolution=orth_resolution, Method=Method, rot=[0.0,np.pi/2,0.0], \ Projection=Projection, Spin=2, zoom_region=zoom_region) gamma_plane_north = proj_north_real + 1j * proj_north_imag # Project original kappa_orig_north, mask_north, kappa_orig_south, mask_south \ = ssht.polar_projection(k_mw, L, resolution=orth_resolution, Method=Method, rot=[0.0,np.pi/2,0.0], \ Projection=Projection, zoom_region=zoom_region) # run planar KS kappa_plane_north = mm.gamma_to_kappa_plane( gamma_plane_north, 1.0, 1.0) for i in range(N_angle): if Projection == "OP": indexes = np.nonzero((rho < np.sin(min(angle[i]+angle_step/2,np.pi/2))) &\
L = 64 el = 4 m = 2 # Generate spherical harmonics. flm = np.zeros(L * L, dtype=complex) ind = ssht.elm2ind(el, m) flm[ind] = 1.0 # Compute function on the sphere. f = ssht.inverse(flm, L) # Plot function on sphere. f_north_real, mask_north_real, f_south_real, mask_south_real, \ f_north_imag, mask_north_imag, f_south_imag, mask_south_imag \ = ssht.polar_projection(f, L, resolution=200, Method="MW", Projection="OP", rot=[0.0,np.pi/2,0.0]) plt.figure(1) plt.subplot(2, 2, 1) plt.imshow(f_north_real, interpolation='nearest') plt.imshow(mask_north_real, interpolation='nearest', cmap=cm.gray, vmin=-1., vmax=1.) plt.axis("off") plt.title("f East Real") plt.subplot(2, 2, 2) plt.imshow(f_north_imag, interpolation='nearest') plt.imshow(mask_north_imag,
plt.ylabel(r"$\theta$") if save_figs: plt.savefig("fig/low_res_gamma_Cylindrical_real.pdf") if show_figs: plt.show() plt.close("all") for Projection in Polar_Projection_array: print "Doing Projection ", Projection # project gamma proj_north_real, mask_north_real, proj_south_real, mask_south_real,\ proj_north_imag, mask_north_imag, proj_south_imag, mask_south_imag\ = ssht.polar_projection(shear, L, resolution=orth_resolution, Method=Method, rot=[0.0,np.pi/2,0.0], Projection=Projection, Spin=2) shear_plane_north = proj_north_real + 1j*proj_north_imag shear_plane_south = proj_south_real - 1j*proj_south_imag # Project original kappa_orig_north, mask_north, kappa_orig_south, mask_south \ = ssht.polar_projection(k_mw, L, resolution=orth_resolution, Method=Method, rot=[0.0,np.pi/2,0.0], Projection=Projection) if print_iteration_results: print "getting info on planar inversion" start_plane = time.clock() kappa_plane_north, count_plane = mm.reduced_shear_to_kappa_plane(shear_plane_north, 1.0,1.0, tol_error=tol_error, Iterate=Iterate, return_count=True) elapsed_plane = (time.clock() - start_plane) error_plane = np.sqrt(np.nanmean((kappa_orig_north-kappa_plane_north.real)**2))