コード例 #1
0
ファイル: test_plt_cartopy.py プロジェクト: yumeone/pysteps
def test_visualization_plot_precip_field(source, map_kwargs, pass_geodata):
    field, metadata = get_precipitation_fields(0, 0, True, True, None, source)
    field = field.squeeze()
    field, __ = to_rainrate(field, metadata)

    if not pass_geodata:
        metadata = None

    plot_precip_field(field, ptype="intensity", geodata=metadata, map_kwargs=map_kwargs)
コード例 #2
0
def test_visualization_motionfields_quiver(source, axis, step, quiver_kwargs,
                                           map_kwargs, upscale, pass_geodata):

    if source is not None:
        fields, geodata = get_precipitation_fields(0, 2, False, True, upscale,
                                                   source)
        if not pass_geodata:
            geodata = None
        ax = plot_precip_field(fields[-1], geodata=geodata)
        oflow_method = motion.get_method("LK")
        UV = oflow_method(fields)

    else:
        shape = (100, 100)
        geodata = None
        ax = None
        u = np.ones(shape[1]) * shape[0]
        v = np.arange(0, shape[0])
        U, V = np.meshgrid(u, v)
        UV = np.concatenate([U[None, :], V[None, :]])

    UV_orig = UV.copy()
    __ = quiver(UV,
                ax,
                geodata,
                axis,
                step,
                quiver_kwargs,
                map_kwargs=map_kwargs)

    # Check that quiver does not modify the input data
    assert np.array_equal(UV, UV_orig)
コード例 #3
0
def test_visualization_plot_precip_field(
    source, type, bbox, colorscale, probthr, title, colorbar, axis,
):

    if type == "intensity":

        field, metadata = get_precipitation_fields(0, 0, True, True, None, source)
        field = field.squeeze()
        field, metadata = conversion.to_rainrate(field, metadata)

    elif type == "depth":

        field, metadata = get_precipitation_fields(0, 0, True, True, None, source)
        field = field.squeeze()
        field, metadata = conversion.to_raindepth(field, metadata)

    elif type == "prob":

        field, metadata = get_precipitation_fields(0, 10, True, True, None, source)
        field, metadata = conversion.to_rainrate(field, metadata)
        field = ensemblestats.excprob(field, probthr)

    ax = plot_precip_field(
        field,
        type=type,
        bbox=bbox,
        geodata=metadata,
        colorscale=colorscale,
        probthr=probthr,
        units=metadata["unit"],
        title=title,
        colorbar=colorbar,
        axis=axis,
    )
    pl.close()
コード例 #4
0
def test_visualization_plot_precip_field(
    source,
    plot_type,
    bbox,
    colorscale,
    probthr,
    title,
    colorbar,
    axis,
):
    if plot_type == "intensity":

        field, metadata = get_precipitation_fields(0, 0, True, True, None,
                                                   source)
        field = field.squeeze()
        field, metadata = conversion.to_rainrate(field, metadata)

    elif plot_type == "depth":

        field, metadata = get_precipitation_fields(0, 0, True, True, None,
                                                   source)
        field = field.squeeze()
        field, metadata = conversion.to_raindepth(field, metadata)

    elif plot_type == "prob":

        field, metadata = get_precipitation_fields(0, 10, True, True, None,
                                                   source)
        field, metadata = conversion.to_rainrate(field, metadata)
        field = ensemblestats.excprob(field, probthr)

    field_orig = field.copy()
    ax = plot_precip_field(
        field.copy(),
        type=plot_type,
        bbox=bbox,
        geodata=None,
        colorscale=colorscale,
        probthr=probthr,
        units=metadata["unit"],
        title=title,
        colorbar=colorbar,
        axis=axis,
    )

    # Check that plot_precip_field does not modify the input data
    field_orig = np.ma.masked_invalid(field_orig)
    field_orig.data[field_orig.mask] = -100
    field = np.ma.masked_invalid(field)
    field.data[field.mask] = -100
    assert np.array_equal(field_orig.data, field.data)
コード例 #5
0
ファイル: test_plt_cartopy.py プロジェクト: AFansGH/pysteps
def test_visualization_plot_precip_field(source, map, drawlonlatlines, lw):

    field, metadata = get_precipitation_fields(0, 0, True, True, None, source)
    field = field.squeeze()
    field, __ = to_rainrate(field, metadata)

    ax = plot_precip_field(
        field,
        type="intensity",
        geodata=metadata,
        map=map,
        drawlonlatlines=drawlonlatlines,
        lw=lw,
    )
コード例 #6
0
def test_visualization_motionfields_streamplot(
    source, axis, streamplot_kwargs, map_kwargs, upscale, pass_geodata
):

    if source is not None:
        fields, geodata = get_precipitation_fields(0, 2, False, True, upscale, source)
        if not pass_geodata:
            pass_geodata = None
        ax = plot_precip_field(fields[-1], geodata=geodata)
        oflow_method = motion.get_method("LK")
        UV = oflow_method(fields)

    else:
        shape = (100, 100)
        geodata = None
        ax = None
        u = np.ones(shape[1]) * shape[0]
        v = np.arange(0, shape[0])
        U, V = np.meshgrid(u, v)
        UV = np.concatenate([U[None, :], V[None, :]])

    __ = streamplot(UV, ax, geodata, axis, streamplot_kwargs, map_kwargs=map_kwargs,)
コード例 #7
0
def test_visualization_motionfields_quiver(
    source,
    map,
    drawlonlatlines,
    lw,
    axis,
    step,
    quiver_kwargs,
    upscale,
):

    if map == "cartopy":
        pytest.importorskip("cartopy")
    elif map == "basemap":
        pytest.importorskip("basemap")

    if source is not None:
        fields, geodata = get_precipitation_fields(0, 2, False, True, upscale,
                                                   source)
        ax = plot_precip_field(
            fields[-1],
            map=map,
            geodata=geodata,
        )
        oflow_method = motion.get_method("LK")
        UV = oflow_method(fields)

    else:
        shape = (100, 100)
        geodata = None
        ax = None
        u = np.ones(shape[1]) * shape[0]
        v = np.arange(0, shape[0])
        U, V = np.meshgrid(u, v)
        UV = np.concatenate([U[None, :], V[None, :]])

    __ = quiver(UV, ax, map, geodata, drawlonlatlines, lw, axis, step,
                quiver_kwargs)
コード例 #8
0
                     12,
                     n_ens_members=24,
                     n_cascade_levels=8,
                     R_thr=-10.0,
                     kmperpixel=1.0,
                     timestep=5)

# plot the S-PROG nowcast, one ensemble member of the STEPS nowcast and the exceedance
# probability of 0.1 mm/h computed from the ensemble
R_f_sprog = transformation.dB_transform(R_f_sprog,
                                        threshold=-10.0,
                                        inverse=True)[0]
pyplot.figure()
plot_precip_field(R_f_sprog,
                  map="basemap",
                  geodata=metadata,
                  drawlonlatlines=True,
                  basemap_resolution='h')
pyplot.savefig("SPROG_nowcast.png", bbox_inches="tight", dpi=300)

R_f = transformation.dB_transform(R_f, threshold=-10.0, inverse=True)[0]

R_f_mean = np.mean(R_f[:, -1, :, :], axis=0)

pyplot.figure()
plot_precip_field(R_f_mean,
                  map="basemap",
                  geodata=metadata,
                  drawlonlatlines=True,
                  basemap_resolution='h')
pyplot.savefig("STEPS_ensemble_mean.png", bbox_inches="tight", dpi=300)
コード例 #9
0
ファイル: plot_steps_nowcast.py プロジェクト: yumeone/pysteps
                      fn_ext,
                      timestep,
                      num_prev_files=2)

# Read the data from the archive
importer = io.get_method(importer_name, "importer")
R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)

# Convert to rain rate
R, metadata = conversion.to_rainrate(R, metadata)

# Upscale data to 2 km to limit memory usage
R, metadata = dimension.aggregate_fields_space(R, metadata, 2000)

# Plot the rainfall field
plot_precip_field(R[-1, :, :], geodata=metadata)
plt.show()

# Log-transform the data to unit of dBR, set the threshold to 0.1 mm/h,
# set the fill value to -15 dBR
R, metadata = transformation.dB_transform(R,
                                          metadata,
                                          threshold=0.1,
                                          zerovalue=-15.0)

# Set missing values with the fill value
R[~np.isfinite(R)] = -15.0

# Nicely print the metadata
pprint(metadata)
コード例 #10
0
    plt.subplot(2, 3, n + 1)
    plt.imshow(frame, interpolation="nearest", vmin=0, vmax=1)
    plt.xticks([])
    plt.yticks([])
plt.show()

################################################################################
# Let's plot one single leadtime in more detail using the pysteps visualization
# functionality.

plt.close()
# Plot the field of probabilities
plot_precip_field(
    fct[2],
    geodata=metadata,
    ptype="prob",
    probthr=thr,
    title="Exceedence probability (+ %i min)" % (nleadtimes * timestep),
)
plt.show()

###############################################################################
# Verification
# ------------

# verifying observations
importer = io.get_method(importer_name, "importer")
fns = io.find_by_date(date,
                      root,
                      fmt,
                      pattern,
コード例 #11
0
ファイル: blended_forecast.py プロジェクト: pySTEPS/pysteps
# Make sure the units are in mm/h
converter = pysteps.utils.get_method("mm/h")
radar_precip, radar_metadata = converter(radar_precip, radar_metadata)
nwp_precip, nwp_metadata = converter(nwp_precip, nwp_metadata)

# Threshold the data
radar_precip[radar_precip < 0.1] = 0.0
nwp_precip[nwp_precip < 0.1] = 0.0

# Plot the radar rainfall field and the first time step of the NWP forecast.
date_str = datetime.strftime(date_radar, "%Y-%m-%d %H:%M")
plt.figure(figsize=(10, 5))
plt.subplot(121)
plot_precip_field(
    radar_precip[-1, :, :],
    geodata=radar_metadata,
    title=f"Radar observation at {date_str}",
)
plt.subplot(122)
plot_precip_field(
    nwp_precip[0, :, :], geodata=nwp_metadata, title=f"NWP forecast at {date_str}"
)
plt.tight_layout()
plt.show()

# transform the data to dB
transformer = pysteps.utils.get_method("dB")
radar_precip, radar_metadata = transformer(radar_precip, radar_metadata, threshold=0.1)
nwp_precip, nwp_metadata = transformer(nwp_precip, nwp_metadata, threshold=0.1)

# r_nwp has to be four dimentional (n_models, time, y, x).
コード例 #12
0
# Import the example radar composite
root_path = rcparams.data_sources["mch"]["root_path"]
filename = os.path.join(root_path, "20160711", "AQC161932100V_00005.801.gif")
R, _, metadata = io.import_mch_gif(filename,
                                   product="AQC",
                                   unit="mm",
                                   accutime=5.0)

# Convert to mm/h
R, metadata = conversion.to_rainrate(R, metadata)

# Nicely print the metadata
pprint(metadata)

# Plot the rainfall field
plot_precip_field(R, geodata=metadata)
plt.show()

# Log-transform the data
R, metadata = transformation.dB_transform(R,
                                          metadata,
                                          threshold=0.1,
                                          zerovalue=-15.0)

# Assign the fill value to all the Nans
R[~np.isfinite(R)] = metadata["zerovalue"]

###############################################################################
# Parametric filter
# -----------------
#
コード例 #13
0
del quality  # Not used

reference_field = np.squeeze(reference_field)  # Remove time dimension

###############################################################################
# Preprocess the data
# ~~~~~~~~~~~~~~~~~~~

# Convert to mm/h
reference_field, metadata = stp.utils.to_rainrate(reference_field, metadata)

# Mask invalid values
reference_field = np.ma.masked_invalid(reference_field)

# Plot the reference precipitation
plot_precip_field(reference_field, title="Reference field")
plt.show()

# Log-transform the data [dBR]
reference_field, metadata = stp.utils.dB_transform(reference_field,
                                                   metadata,
                                                   threshold=0.1,
                                                   zerovalue=-15.0)

print("Precip. pattern shape: " + str(reference_field.shape))

# This suppress nan conversion warnings in plot functions
reference_field.data[reference_field.mask] = np.nan


################################################################################
コード例 #14
0
)

# Read the data from the archive
importer = io.get_method(datasource_params["importer"], "importer")
reflectivity, _, metadata = io.read_timeseries(
    fns, importer, **datasource_params["importer_kwargs"])

# Convert reflectivity to rain rate
rainrate, metadata = conversion.to_rainrate(reflectivity, metadata)

# Upscale data to 2 km to reduce computation time
rainrate, metadata = dimension.aggregate_fields_space(rainrate, metadata, 2000)

# Plot the most recent rain rate field
plt.figure()
plot_precip_field(rainrate[-1, :, :])
plt.show()

###############################################################################
# Estimate the advection field
# ----------------------------

# The advection field is estimated using the Lucas-Kanade optical flow
advection = dense_lucaskanade(rainrate, verbose=True)

###############################################################################
# Deterministic nowcast
# ---------------------

# Compute 30-minute LINDA nowcast with 8 parallel workers
# Restrict the number of features to 15 to reduce computation time
コード例 #15
0
                              root_path,
                              path_fmt,
                              fn_pattern,
                              fn_ext,
                              timestep,
                              num_prev_files=2)

# Read the radar composites
importer = io.get_method(importer_name, "importer")
Z, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)

# Convert to rain rate using the finnish Z-R relationship
R, metadata = conversion.to_rainrate(Z, metadata, 223.0, 1.53)

# Plot the rainfall field
plot_precip_field(R[-1, :, :], geodata=metadata)

# Store the last frame for plotting it later later
R_ = R[-1, :, :].copy()

# Log-transform the data to unit of dBR, set the threshold to 0.1 mm/h,
# set the fill value to -15 dBR
R, metadata = transformation.dB_transform(R,
                                          metadata,
                                          threshold=0.1,
                                          zerovalue=-15.0)

# Nicely print the metadata
pprint(metadata)

###############################################################################
コード例 #16
0
    ax.add_artist(circle)
    circle = plt.Circle(
        (590, 240), 30, color="r", clip_on=False, fill=False, zorder=1e9
    )
    ax.add_artist(circle)
    circle = plt.Circle(
        (585, 160), 15, color="r", clip_on=False, fill=False, zorder=1e9
    )
    ax.add_artist(circle)


fig = plt.figure(figsize=(10, 13))

ax = fig.add_subplot(321)
rainrate_field[-1][rainrate_field[-1] < 0.5] = 0.0
plot_precip_field(rainrate_field[-1])
plot_growth_decay_circles(ax)
ax.set_title("Obs. %s" % str(date))

ax = fig.add_subplot(322)
plot_precip_field(refobs_field)
plot_growth_decay_circles(ax)
ax.set_title("Obs. %s" % str(date + timedelta(minutes=15)))

ax = fig.add_subplot(323)
plot_precip_field(forecast_extrap[-1])
plot_growth_decay_circles(ax)
ax.set_title("Extrapolation +15 minutes")

ax = fig.add_subplot(324)
plot_precip_field(forecast_sprog[-1])
コード例 #17
0
    R_ac += advection_correction(R[i:(i + 2)], T=10, t=1)
R_ac /= R.shape[0]

###############################################################################
# Results
# -------
#
# We compare the two accumulation maps. The first map on the left is
# computed without advection correction and we can therefore see that the shift
# between successive images 10 minutes apart produces irregular accumulations.
# Conversely, the rainfall accumulation of the right is produced using advection
# correction to account for this spatial shift. The final result is a smoother
# rainfall accumulation map.

pl.figure(figsize=(9, 4))
pl.subplot(121)
plot_precip_field(R.mean(axis=0), title="3-h rainfall accumulation")
pl.subplot(122)
plot_precip_field(R_ac, title="Same with advection correction")
pl.tight_layout()
pl.show()

################################################################################
# Reference
# ~~~~~~~~~
#
# Anagnostou, E. N., and W. F. Krajewski. 1999. "Real-Time Radar Rainfall
# Estimation. Part I: Algorithm Formulation." Journal of Atmospheric and
# Oceanic Technology 16: 189–97.
# https://doi.org/10.1175/1520-0426(1999)016<0189:RTRREP>2.0.CO;2
コード例 #18
0
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# The tstorm-dating function requires the entire pre-loaded time series.
# The first two timesteps are required to initialize the
# flow prediction and are not used to compute tracks.

track_list, cell_list, label_list = tstorm_dating.dating(
    input_video=Z,
    timelist=timelist,
)

###############################################################################
# Plotting the results
# ~~~~~~~~~~~~~~~~~~~~

# Plot precipitation field
plot_precip_field(Z[2, :, :], geodata=metadata, units=metadata["unit"])
plt.xlabel("Swiss easting [m]")
plt.ylabel("Swiss northing [m]")

# Add the identified cells
plot_cart_contour(cells_id.cont, geodata=metadata)

# Filter the tracks to only contain cells existing in this timestep
IDs = cells_id.ID.values
track_filt = []
for track in track_list:
    if np.unique(track.ID) in IDs:
        track_filt.append(track)

# Add their tracks
plot_track(track_filt, geodata=metadata)
コード例 #19
0
ファイル: rainfarm_downscale.py プロジェクト: yumeone/pysteps
filename = os.path.join(root_path, "20160711", "AQC161932100V_00005.801.gif")
precip, _, metadata = io.import_mch_gif(
    filename, product="AQC", unit="mm", accutime=5.0
)

# Convert to mm/h
precip, metadata = to_rainrate(precip, metadata)

# Reduce to a square domain
precip, metadata = square_domain(precip, metadata, "crop")

# Nicely print the metadata
pprint(metadata)

# Plot the original rainfall field
plot_precip_field(precip, geodata=metadata)
plt.show()

# Assign the fill value to all the Nans
precip[~np.isfinite(precip)] = metadata["zerovalue"]

###############################################################################
# Upscale the field
# -----------------
#
# To test our downscaling method, we first need to upscale the original field to
# a lower resolution. We are going to use an upscaling factor of 16 x.

upscaling_factor = 16
upscale_to = metadata["xpixelsize"] * upscaling_factor  # upscaling factor : 16 x
precip_lr, metadata_lr = aggregate_fields_space(precip, metadata, upscale_to)
コード例 #20
0
################################################################################
# Lucas-Kanade (LK)
# -----------------
#
# The Lucas-Kanade optical flow method implemented in pysteps is a local
# tracking approach that relies on the OpenCV package.
# Local features are tracked in a sequence of two or more radar images. The
# scheme includes a final interpolation step in order to produce a smooth
# field of motion vectors.

oflow_method = motion.get_method("LK")
V1 = oflow_method(R[-3:, :, :])

# Plot the motion field on top of the reference frame
plot_precip_field(R_, geodata=metadata, title="LK")
quiver(V1, geodata=metadata, step=25)
plt.show()

################################################################################
# Variational echo tracking (VET)
# -------------------------------
#
# This module implements the VET algorithm presented
# by Laroche and Zawadzki (1995) and used in the McGill Algorithm for
# Prediction by Lagrangian Extrapolation (MAPLE) described in
# Germann and Zawadzki (2002).
# The approach essentially consists of a global optimization routine that seeks
# at minimizing a cost function between the displaced and the reference image.

oflow_method = motion.get_method("VET")
コード例 #21
0
def plot_optflow_method_convergence(input_precip,
                                    optflow_method_name,
                                    motion_type):
    """
    Test the convergence to the actual solution of the optical flow method used.

    Parameters
    ----------

    input_precip: numpy array (lat, lon)
        Input precipitation field.

    optflow_method_name: str
        Optical flow method name

    motion_type : str
        The supported motion fields are:

            - linear_x: (u=2, v=0)
            - linear_y: (u=0, v=2)
            - rotor: rotor field
    """

    if optflow_method_name.lower() != "darts":
        num_times = 2
    else:
        num_times = 9

    ideal_motion, precip_obs = create_observations(input_precip,
                                                   motion_type,
                                                   num_times=num_times)

    oflow_method = motion.get_method(optflow_method_name)

    computed_motion = oflow_method(precip_obs, verbose=False)

    precip_obs, _ = stp.utils.dB_transform(precip_obs, inverse=True)

    precip_data = precip_obs.max(axis=0)
    precip_data.data[precip_data.mask] = 0

    precip_mask = ((uniform_filter(precip_data, size=20) > 0.1)
                   & ~precip_obs.mask.any(axis=0))

    cmap = get_cmap('jet')
    cmap.set_under('grey', alpha=0.25)
    cmap.set_over('none')

    # Compare retrieved motion field with the ideal one
    plt.figure(figsize=(9, 4))
    plt.subplot(1, 2, 1)
    ax = plot_precip_field(precip_obs[0], title="Reference motion")
    quiver(ideal_motion, step=25, ax=ax)

    plt.subplot(1, 2, 2)
    ax = plot_precip_field(precip_obs[0], title="Retrieved motion")
    quiver(computed_motion, step=25, ax=ax)

    # To evaluate the accuracy of the computed_motion vectors, we will use
    # a relative RMSE measure.
    # Relative MSE = < (expected_motion - computed_motion)^2 > / <expected_motion^2 >
    # Relative RMSE = sqrt(Relative MSE)

    mse = ((ideal_motion - computed_motion)[:, precip_mask] ** 2).mean()

    rel_mse = mse / (ideal_motion[:, precip_mask] ** 2).mean()
    plt.suptitle(f"{optflow_method_name} "
                 f"Relative RMSE: {np.sqrt(rel_mse) * 100:.2f}%")
    plt.show()
コード例 #22
0
                     R_thr=-10.0,
                     decomp_method="fft",
                     bandpass_filter_method="gaussian",
                     probmatching_method="mean",
                     fft_method="pyfftw")

R_f = transformation.dB_transform(R_f, threshold=-10.0, inverse=True)[0]

fig = figure(figsize=(9, 9))
ax = fig.add_subplot(221)
ax.set_title("a)", loc="left", fontsize=12)

if map_plotter == "cartopy":
    plot_precip_field(R_f[-1, :, :],
                      map="cartopy",
                      geodata=metadata,
                      drawlonlatlines=True,
                      cartopy_scale="50m")
else:
    bm = plot_precip_field(R_f[-1, :, :],
                           map="basemap",
                           geodata=metadata,
                           drawlonlatlines=False,
                           basemap_resolution=basemap_resolution,
                           basemap_scale_args=[30.0, 58.5, 30.2, 58.5, 120])

# the STEPS nowcast
nowcast_method = nowcasts.get_method("steps")
R_f = nowcast_method(R[-3:, :, :],
                     V,
                     12,