コード例 #1
0
ファイル: gamma.py プロジェクト: LumingS/pystorms
    def step(self, actions=None, log=True):
        # Implement the actions and take a step forward
        done = self.env.step(actions)

        # Log the flows in the networks
        if log:
            self._logger()

        # Estimate the _performormance
        __performance = 0.0  # temp variable

        for ID, attribute in self.config["performance_targets"]:
            if attribute == "flooding":
                __flood = self.env.methods[attribute](ID)
                if __flood > 0.0:
                    __performance += 10**6
            elif attribute == "flow":
                __target = self._performormance_threshold
                __performance += threshold(self.env.methods[attribute](ID),
                                           __target,
                                           scaling=1.0)
            # Check for water in the last timestep
            elif done and attribute == "depthN":
                __depth = self.env.methods[attribute](ID)
                if __depth > 0.10:
                    __performance += 7 * 10**5

        # Record the _performormance
        self.data_log["performance_measure"].append(__performance)

        # Terminate the simulation
        if done:
            self.env.terminate()

        return done
コード例 #2
0
ファイル: theta.py プロジェクト: kLabUM/pystorms
    def step(self, actions=None, log=True):
        # Implement the actions and take a step forward
        done = self.env.step(actions)

        # Log the flows in the networks
        if log:
            self._logger()

        # Estimate the performance
        __performance = 0.0

        for ID, attribute in self.config["performance_targets"]:
            if attribute == "flooding":
                __flood = self.env.methods[attribute](ID)
                if __flood > 0.0:
                    __performance += 10**6
            if attribute == "flow":
                __flow = self.env.methods[attribute](ID)
                __performance = threshold(value=__flow,
                                          target=self.threshold,
                                          scaling=10.0)

        # Record the _performance
        self.data_log["performance_measure"].append(__performance)

        # Terminate the simulation
        if done:
            self.env.terminate()

        return done
コード例 #3
0
    def step(self, actions, log=True):
        # Implement the action and take a step forward
        _, done = self.env.step(actions)

        # Log the flows in the networks
        if log:
            self._logger()

        # Estimate the _performormance
        __performance = 0.0  # temporary variable

        for ID, attribute in self.config["performance_targets"]:
            if attribute == "flooding":
                flood = self.env.methods[attribute](ID)
                if flood > 0.0:
                    __performance += 10 ** 9
            elif attribute == "loading":
                _target = self._performormance_threshold
                pollutantLoading = (
                    self.env.methods["pollutantL"](ID, 0)
                    * self.env.methods["flow"](ID)
                    * 28.3168
                    / (10 ** 6)
                )
                __performance += threshold(pollutantLoading, _target)

        # Record the _performormance
        self.data_log["performance_measure"].append(__performance)

        # Terminate the simulation
        if done:
            self.env._terminate()

        return done
コード例 #4
0
    def step(self, actions, log=True):
        # Implement the actions and take a step forward
        _, done = self.env.step(actions)

        # Log the flows in the networks
        if log:
            self._logger()

        # Estimate the _performormance
        __performorm = 0.0  # temp variable

        for ID, attribute in self.config["performance_targets"]:
            if attribute == "flooding":
                flood = self.env.methods[attribute](ID)
                if flood > 0.0:
                    __performorm += 10**6
            else:
                _target = self._performormance_threshold
                __performorm += threshold(self.env.methods[attribute](ID),
                                          _target,
                                          scaling=1.0)

        # Record the _performormance
        self.data_log["performance_measure"].append(__performorm)

        # Terminate the simulation
        if done:
            self.env._terminate()

        return done
コード例 #5
0
    def step(self, actions=None, log=True):
        # Implement the actions and take a step forward
        done = self.env.step(actions)

        # Temp variables
        __performance = 0.0

        # Determine current timestep in simulation by
        # obtaining the differeence between the current time
        # and previous time, and converting to seconds
        __currentsimtime = self.env._getCurrentSimulationDateTime()

        if len(self.data_log["simulation_time"]) > 1:
            __prevsimtime = self.data_log["simulation_time"][-1]
        else:
            __prevsimtime = self.env._getInitialSimulationDateTime()

        __timestep = (__currentsimtime - __prevsimtime).total_seconds()

        # Log the flows in the networks
        if log:
            self._logger()

        # Estimate the performance
        for ID, attribute in self.config["performance_targets"]:
            # compute penalty for flooding
            if attribute == "flooding":
                __flood = self.env.methods[attribute](ID)
                if __flood > 0.0:
                    __performance += __flood * (10 ** 6)
            # compute penalty for CSO overflow
            # TODO - decide if we want to have a penalty for negative flow
            if attribute == "flow":
                __flow = self.env.methods[attribute](ID)
                __volume = __timestep * __flow
                __performance += threshold(value=__volume, target=0.0, scaling=1.0)

        # Record the _performance
        self.data_log["performance_measure"].append(__performance)

        # Terminate the simulation
        if done:
            self.env.terminate()

        return done
コード例 #6
0
    def step(self, actions=None, log=True):
        # Implement the actions and take a step forward
        done = self.env.step(actions)

        # Log the flows in the networks
        if log:
            self._logger()

        # Estimate the performance
        __performance = 0.0

        for ID, attribute in self.config["performance_targets"]:
            # compute penalty for flooding
            if attribute == "flooding":
                __flood = self.env.methods[attribute](ID)
                if __flood > 0.0:
                    __performance += 10**6
            # compute penalty for flow out of network above threshold
            if attribute == "flow":
                __flow = self.env.methods[attribute](ID)
                __performance += threshold(value=__flow,
                                           target=self.threshold,
                                           scaling=10.0)
            # compute penalty for depth at basins above/below predefined ranges
            if attribute == "depthN":
                depth = self.env.methods[attribute](ID)
                temp = self.depth_thresholds[ID]
                if ID == "basin_S":
                    if depth > temp[1]:  # flooding value
                        __performance += 10**6
                    elif depth > temp[0]:
                        __temp = (depth - temp[0]) / (temp[1] - temp[0])
                        __performance += exponentialpenalty(
                            value=__temp,
                            max_penalty=self.max_penalty,
                            scaling=1.0)
                    else:
                        __performance += 0.0
                else:
                    if depth > temp[0] or depth < temp[
                            1]:  # flooding value + fish dead
                        __performance += 10**6
                    elif depth > temp[2]:
                        __temp = (depth - temp[2]) / (temp[0] - temp[2])
                        __performance += exponentialpenalty(
                            value=__temp,
                            max_penalty=self.max_penalty,
                            scaling=1.0)
                    elif depth < temp[3]:
                        __temp = (temp[3] - depth) / (temp[3] - temp[1])
                        __performance += exponentialpenalty(
                            value=__temp,
                            max_penalty=self.max_penalty,
                            scaling=1.0)
                    else:
                        __performance += 0.0

        # Record the _performance
        self.data_log["performance_measure"].append(__performance)

        # Terminate the simulation
        if done:
            self.env.terminate()

        return done