def test_energy(): # make sure that energy as computed by ssvm is the same as by lp np.random.seed(0) for inference_method in get_installed(["lp", "ad3"]): found_fractional = False crf = DirectionalGridCRF(n_states=3, n_features=3, inference_method=inference_method) while not found_fractional: x = np.random.normal(size=(7, 8, 3)) unary_params = np.random.normal(size=(3, 3)) pw1 = np.random.normal(size=(3, 3)) pw2 = np.random.normal(size=(3, 3)) w = np.hstack([unary_params.ravel(), pw1.ravel(), pw2.ravel()]) res, energy = crf.inference(x, w, relaxed=True, return_energy=True) found_fractional = np.any(np.max(res[0], axis=-1) != 1) joint_feature = crf.joint_feature(x, res) energy_svm = np.dot(joint_feature, w) assert_almost_equal(energy, -energy_svm) if not found_fractional: # exact discrete labels, test non-relaxed version res, energy = crf.inference(x, w, relaxed=False, return_energy=True) joint_feature = crf.joint_feature(x, res) energy_svm = np.dot(joint_feature, w) assert_almost_equal(energy, -energy_svm)
def test_joint_feature_continuous(): # FIXME # first make perfect prediction, including pairwise part X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1) x, y = X[0], Y[0] n_states = x.shape[-1] pw_horz = -1 * np.eye(n_states) xx, yy = np.indices(pw_horz.shape) # linear ordering constraint horizontally pw_horz[xx > yy] = 1 # high cost for unequal labels vertically pw_vert = -1 * np.eye(n_states) pw_vert[xx != yy] = 1 pw_vert *= 10 # create crf, assemble weight, make prediction for inference_method in get_installed(["lp", "ad3"]): crf = DirectionalGridCRF(inference_method=inference_method) crf.initialize(X, Y) w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()]) y_pred = crf.inference(x, w, relaxed=True) # compute joint_feature for prediction joint_feature_y = crf.joint_feature(x, y_pred) assert_equal(joint_feature_y.shape, (crf.size_joint_feature,))
def test_joint_feature_discrete(): X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1) x, y = X[0], Y[0] for inference_method in get_installed(["lp", "ad3", "qpbo"]): crf = DirectionalGridCRF(inference_method=inference_method) crf.initialize(X, Y) joint_feature_y = crf.joint_feature(x, y) assert_equal(joint_feature_y.shape, (crf.size_joint_feature,)) # first horizontal, then vertical # we trust the unaries ;) pw_joint_feature_horz, pw_joint_feature_vert = joint_feature_y[crf.n_states * crf.n_features:].reshape( 2, crf.n_states, crf.n_states) xx, yy = np.indices(y.shape) assert_array_equal(pw_joint_feature_vert, np.diag([9 * 4, 9 * 4, 9 * 4])) vert_joint_feature = np.diag([10 * 3, 10 * 3, 10 * 3]) vert_joint_feature[0, 1] = 10 vert_joint_feature[1, 2] = 10 assert_array_equal(pw_joint_feature_horz, vert_joint_feature)