def test_blocks_crf_unaries(): X, Y = toy.generate_blocks(n_samples=1) x, y = X[0], Y[0] unary_weights = np.repeat(np.eye(2), 2, axis=0) pairwise_weights = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) w = np.hstack([unary_weights.ravel(), pairwise_weights]) crf = LatentGridCRF(n_labels=2, n_states_per_label=2) h_hat = crf.inference(x, w) assert_array_equal(h_hat / 2, np.argmax(x, axis=-1))
def main(): X, Y = toy.generate_crosses(n_samples=40, noise=8, n_crosses=2, total_size=10) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5) n_labels = len(np.unique(Y_train)) crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2, inference_method='lp') clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2, check_constraints=True, n_jobs=-1, break_on_bad=True, plot=True) clf.fit(X_train, Y_train) for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"], [X_test, Y_test, [None] * len(X_test), "test"]]: Y_pred = clf.predict(X_) i = 0 loss = 0 for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred): loss += np.sum(y != y_pred / crf.n_states_per_label) fig, ax = plt.subplots(3, 2) ax[0, 0].matshow(y * crf.n_states_per_label, vmin=0, vmax=crf.n_states - 1) ax[0, 0].set_title("ground truth") unary_params = np.repeat(np.eye(2), 2, axis=1) pairwise_params = np.zeros(10) w_unaries_only = np.hstack([unary_params.ravel(), pairwise_params.ravel()]) unary_pred = crf.inference(x, w_unaries_only) ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_states - 1) ax[0, 1].set_title("unaries only") if h_init is None: ax[1, 0].set_visible(False) else: ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1) ax[1, 0].set_title("latent initial") ax[1, 1].matshow(crf.latent(x, y, clf.w), vmin=0, vmax=crf.n_states - 1) ax[1, 1].set_title("latent final") ax[2, 0].matshow(y_pred, vmin=0, vmax=crf.n_states - 1) ax[2, 0].set_title("prediction") ax[2, 1].matshow((y_pred // crf.n_states_per_label) * crf.n_states_per_label, vmin=0, vmax=crf.n_states - 1) ax[2, 1].set_title("prediction") for a in ax.ravel(): a.set_xticks(()) a.set_yticks(()) fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight") i += 1 print("loss %s set: %f" % (name, loss)) print(clf.w)
def test_blocks_crf(): X, Y = toy.generate_blocks(n_samples=1) x, y = X[0], Y[0] pairwise_weights = np.array([0, 0, 0, -4, -4, 0, -4, -4, 0, 0]) unary_weights = np.repeat(np.eye(2), 2, axis=0) w = np.hstack([unary_weights.ravel(), pairwise_weights]) crf = LatentGridCRF(n_labels=2, n_states_per_label=2) h_hat = crf.inference(x, w) assert_array_equal(y, h_hat / 2) h = crf.latent(x, y, w) assert_equal(crf.loss(h, h_hat), 0)
def main(): X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5) n_labels = len(np.unique(Y_train)) crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2], inference_method='lp') clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2, check_constraints=True, n_jobs=-1, break_on_bad=True) clf.fit(X_train, Y_train) i = 0 for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"], [X_test, Y_test, [None] * len(X_test), "test"]]: Y_pred = clf.predict(X_) score = clf.score(X_, Y_) for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred): fig, ax = plt.subplots(4, 1) ax[0].matshow(y, vmin=0, vmax=crf.n_labels - 1) ax[0].set_title("Ground truth") ax[1].matshow(np.argmax(x, axis=-1), vmin=0, vmax=crf.n_labels - 1) ax[1].set_title("Unaries only") #if h_init is None: #ax[1, 0].set_visible(False) #else: #ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1) #ax[1, 0].set_title("latent initial") #ax[2].matshow(crf.latent(x, y, clf.w), #vmin=0, vmax=crf.n_states - 1) #ax[2].set_title("latent final") ax[2].matshow(crf.inference(x, clf.w), vmin=0, vmax=crf.n_states - 1) ax[2].set_title("Prediction for h") ax[3].matshow(y_pred, vmin=0, vmax=crf.n_labels - 1) ax[3].set_title("Prediction for y") for a in ax.ravel(): a.set_xticks(()) a.set_yticks(()) plt.subplots_adjust(hspace=.5) fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight", dpi=400) i += 1 print("score %s set: %f" % (name, score)) print(clf.w)
def test_blocks_crf_directional(): # test latent directional CRF on blocks # test that all results are the same as equivalent LatentGridCRF X, Y = toy.generate_blocks(n_samples=1) x, y = X[0], Y[0] pairwise_weights = np.array([0, 0, 0, -4, -4, 0, -4, -4, 0, 0]) unary_weights = np.repeat(np.eye(2), 2, axis=0) w = np.hstack([unary_weights.ravel(), pairwise_weights]) pw_directional = np.array([0, 0, -4, -4, 0, 0, -4, -4, -4, -4, 0, 0, -4, -4, 0, 0, 0, 0, -4, -4, 0, 0, -4, -4, -4, -4, 0, 0, -4, -4, 0, 0]) w_directional = np.hstack([unary_weights.ravel(), pw_directional]) crf = LatentGridCRF(n_labels=2, n_states_per_label=2) directional_crf = LatentDirectionalGridCRF(n_labels=2, n_states_per_label=2) h_hat = crf.inference(x, w) h_hat_d = directional_crf.inference(x, w_directional) assert_array_equal(h_hat, h_hat_d) h = crf.latent(x, y, w) h_d = directional_crf.latent(x, y, w_directional) assert_array_equal(h, h_d) h_hat = crf.loss_augmented_inference(x, y, w) h_hat_d = directional_crf.loss_augmented_inference(x, y, w_directional) assert_array_equal(h_hat, h_hat_d) psi = crf.psi(x, h_hat) psi_d = directional_crf.psi(x, h_hat) assert_array_equal(np.dot(psi, w), np.dot(psi_d, w_directional))
def main(): X, Y = toy.generate_crosses(n_samples=40, noise=8, n_crosses=2, total_size=10) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5) n_labels = len(np.unique(Y_train)) crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2, inference_method='lp') clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2, check_constraints=True, n_jobs=-1, break_on_bad=True, plot=True) clf.fit(X_train, Y_train) for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"], [X_test, Y_test, [None] * len(X_test), "test"]]: Y_pred = clf.predict(X_) i = 0 loss = 0 for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred): loss += np.sum(y != y_pred / crf.n_states_per_label) fig, ax = plt.subplots(3, 2) ax[0, 0].matshow(y * crf.n_states_per_label, vmin=0, vmax=crf.n_states - 1) ax[0, 0].set_title("ground truth") unary_params = np.repeat(np.eye(2), 2, axis=1) pairwise_params = np.zeros(10) w_unaries_only = np.hstack( [unary_params.ravel(), pairwise_params.ravel()]) unary_pred = crf.inference(x, w_unaries_only) ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_states - 1) ax[0, 1].set_title("unaries only") if h_init is None: ax[1, 0].set_visible(False) else: ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1) ax[1, 0].set_title("latent initial") ax[1, 1].matshow(crf.latent(x, y, clf.w), vmin=0, vmax=crf.n_states - 1) ax[1, 1].set_title("latent final") ax[2, 0].matshow(y_pred, vmin=0, vmax=crf.n_states - 1) ax[2, 0].set_title("prediction") ax[2, 1].matshow( (y_pred // crf.n_states_per_label) * crf.n_states_per_label, vmin=0, vmax=crf.n_states - 1) ax[2, 1].set_title("prediction") for a in ax.ravel(): a.set_xticks(()) a.set_yticks(()) fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight") i += 1 print("loss %s set: %f" % (name, loss)) print(clf.w)