コード例 #1
0
def graph_input_prune(gr, ypred, N, skip_oneclass=False):
    """ Given a gr and a given scoring, keep only top N s1 for each s0,
    and stash the others away to _x-suffixed keys (for potential recovery). """
    slices = []

    def prune_filter(ypred, N):
        """ yield (index, passed) tuples """
        ys = sorted(enumerate(ypred), key=lambda yy: yy[1], reverse=True)
        i = 0
        for n, y in ys:
            yield n, (i < N)
            i += 1

    # Go through (s0, s1), keeping track of the beginning of the current
    # s0 block, and appending pruned versions
    i = 0
    grp = dict([(k, []) for k in gr.keys()] + [(k + '_x', [])
                                               for k in gr.keys()])
    for j in range(len(gr['si0']) + 1):
        if j < len(gr['si0']) and (j == 0 or
                                   np.all(gr['si0'][j] == gr['si0'][j - 1])):
            # within same-s0 block, carry on
            continue
        # block boundary

        # possibly check if we have both classes picked (for training)
        if skip_oneclass:
            n_picked = 0
            for n, passed in prune_filter(ypred[i:j], N):
                if not passed:
                    break
                n_picked += gr['score'][i + n] > 0
            if n_picked == 0:
                # only false; tough luck, prune everything for this s0
                for k in gr.keys():
                    grp[k + '_x'] += list(gr[k][i:j])
                i = j
                continue

        # append pruned subset
        for n, passed in prune_filter(ypred[i:j], N):
            for k in gr.keys():
                if passed:
                    grp[k].append(gr[k][i + n])
                else:
                    grp[k + '_x'].append(gr[k][i + n])

        i = j

    return graph_nparray_anssel(grp)
コード例 #2
0
ファイル: anssel.py プロジェクト: GALI472/dataset-sts
def graph_input_prune(gr, ypred, N, skip_oneclass=False):
    """ Given a gr and a given scoring, keep only top N s1 for each s0,
    and stash the others away to _x-suffixed keys (for potential recovery). """
    slices = []

    def prune_filter(ypred, N):
        """ yield (index, passed) tuples """
        ys = sorted(enumerate(ypred), key=lambda yy: yy[1], reverse=True)
        i = 0
        for n, y in ys:
            yield n, (i < N)
            i += 1

    # Go through (s0, s1), keeping track of the beginning of the current
    # s0 block, and appending pruned versions
    i = 0
    grp = dict([(k, []) for k in gr.keys()] + [(k+'_x', []) for k in gr.keys()])
    for j in range(len(gr['si0']) + 1):
        if j < len(gr['si0']) and (j == 0 or np.all(gr['si0'][j] == gr['si0'][j-1])):
            # within same-s0 block, carry on
            continue
        # block boundary

        # possibly check if we have both classes picked (for training)
        if skip_oneclass:
            n_picked = 0
            for n, passed in prune_filter(ypred[i:j], N):
                if not passed:
                    break
                n_picked += gr['score'][i + n] > 0
            if n_picked == 0:
                # only false; tough luck, prune everything for this s0
                for k in gr.keys():
                    grp[k+'_x'] += list(gr[k][i:j])
                i = j
                continue

        # append pruned subset
        for n, passed in prune_filter(ypred[i:j], N):
            for k in gr.keys():
                if passed:
                    grp[k].append(gr[k][i + n])
                else:
                    grp[k+'_x'].append(gr[k][i + n])

        i = j

    return graph_nparray_anssel(grp)
コード例 #3
0
ファイル: anssel.py プロジェクト: GALI472/dataset-sts
def graph_input_unprune(gro, grp, ypred, xval):
    """ Reconstruct original graph gro from a pruned graph grp,
    with predictions set to always False for the filtered out samples.
    (xval denotes how the False is represented) """
    if 'score_x' not in grp:
        return grp, ypred  # not actually pruned

    gru = dict([(k, list(grp[k])) for k in gro.keys()])

    # XXX: this will generate non-continuous s0 blocks,
    # hopefully okay for all ev tools
    for k in gro.keys():
        gru[k] += grp[k+'_x']
    ypred = list(ypred)
    ypred += [xval for i in grp['score_x']]
    ypred = np.array(ypred)

    return graph_nparray_anssel(gru), ypred
コード例 #4
0
def graph_input_unprune(gro, grp, ypred, xval):
    """ Reconstruct original graph gro from a pruned graph grp,
    with predictions set to always False for the filtered out samples.
    (xval denotes how the False is represented) """
    if 'score_x' not in grp:
        return grp, ypred  # not actually pruned

    gru = dict([(k, list(grp[k])) for k in gro.keys()])

    # XXX: this will generate non-continuous s0 blocks,
    # hopefully okay for all ev tools
    for k in gro.keys():
        gru[k] += grp[k + '_x']
    ypred = list(ypred)
    ypred += [xval for i in grp['score_x']]
    ypred = np.array(ypred)

    return graph_nparray_anssel(gru), ypred
コード例 #5
0
ファイル: para.py プロジェクト: lizihan021/Hotpot
    def load_set(self, fname, lists=None):
        if lists:
            s0, s1, y = lists
        else:
            #            s0, s1, y = loader.load_msrpara(fname)   #set it free is we decide not to use quora dataset
            s0, s1, y = loader.load_quora(fname)

        if self.vocab is None:
            vocab = Vocabulary(s0 + s1,
                               prune_N=self.c['embprune'],
                               icase=self.c['embicase'])
        else:
            vocab = self.vocab

        si0, sj0 = vocab.vectorize(s0, self.emb, spad=self.s0pad)
        si1, sj1 = vocab.vectorize(s1, self.emb, spad=self.s1pad)
        f0, f1 = nlp.sentence_flags(s0, s1, self.s0pad, self.s1pad)
        gr = graph_nparray_anssel(
            graph_input_anssel(si0, si1, sj0, sj1, None, None, y, f0, f1))

        return (gr, y, vocab)