def main(): # cl.array.to_device(queue, numpy_array) from meshmode.mesh.io import generate_gmsh, FileSource mesh = generate_gmsh( FileSource("ellipsoid.step"), 2, order=2, other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h]) from meshmode.mesh.processing import perform_flips # Flip elements--gmsh generates inside-out geometry. mesh = perform_flips(mesh, np.ones(mesh.nelements)) print("%d elements" % mesh.nelements) from meshmode.mesh.processing import find_bounding_box bbox_min, bbox_max = find_bounding_box(mesh) bbox_center = 0.5*(bbox_min+bbox_max) bbox_size = max(bbox_max-bbox_min) / 2 logger.info("%d elements" % mesh.nelements) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order, fmm_order=qbx_order + 10, fmm_backend="fmmlib") from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator pde_op = MuellerAugmentedMFIEOperator( omega=0.4, epss=[1.4, 1.0], mus=[1.2, 1.0], ) from pytential import bind, sym unk = pde_op.make_unknown("sigma") sym_operator = pde_op.operator(unk) sym_rhs = pde_op.rhs( sym.make_sym_vector("Einc", 3), sym.make_sym_vector("Hinc", 3)) sym_repr = pde_op.representation(0, unk) if 1: expr = sym_repr print(sym.pretty(expr)) print("#"*80) from pytential.target import PointsTarget tgt_points=np.zeros((3,1)) tgt_points[0,0] = 100 tgt_points[1,0] = -200 tgt_points[2,0] = 300 bound_op = bind((qbx, PointsTarget(tgt_points)), expr) print(bound_op.code) if 1: def green3e(x,y,z,source,strength,k): # electric field corresponding to dyadic green's function # due to monochromatic electric dipole located at "source". # "strength" is the the intensity of the dipole. # E = (I + Hess)(exp(ikr)/r) dot (strength) # dx = x - source[0] dy = y - source[1] dz = z - source[2] rr = np.sqrt(dx**2 + dy**2 + dz**2) fout = np.exp(1j*k*rr)/rr evec = fout*strength qmat = np.zeros((3,3),dtype=np.complex128) qmat[0,0]=(2*dx**2-dy**2-dz**2)*(1-1j*k*rr) qmat[1,1]=(2*dy**2-dz**2-dx**2)*(1-1j*k*rr) qmat[2,2]=(2*dz**2-dx**2-dy**2)*(1-1j*k*rr) qmat[0,0]=qmat[0,0]+(-k**2*dx**2*rr**2) qmat[1,1]=qmat[1,1]+(-k**2*dy**2*rr**2) qmat[2,2]=qmat[2,2]+(-k**2*dz**2*rr**2) qmat[0,1]=(3-k**2*rr**2-3*1j*k*rr)*(dx*dy) qmat[1,2]=(3-k**2*rr**2-3*1j*k*rr)*(dy*dz) qmat[2,0]=(3-k**2*rr**2-3*1j*k*rr)*(dz*dx) qmat[1,0]=qmat[0,1] qmat[2,1]=qmat[1,2] qmat[0,2]=qmat[2,0] fout=np.exp(1j*k*rr)/rr**5/k**2 fvec = fout*np.dot(qmat,strength) evec = evec + fvec return evec def green3m(x,y,z,source,strength,k): # magnetic field corresponding to dyadic green's function # due to monochromatic electric dipole located at "source". # "strength" is the the intensity of the dipole. # H = curl((I + Hess)(exp(ikr)/r) dot (strength)) = # strength \cross \grad (exp(ikr)/r) # dx = x - source[0] dy = y - source[1] dz = z - source[2] rr = np.sqrt(dx**2 + dy**2 + dz**2) fout=(1-1j*k*rr)*np.exp(1j*k*rr)/rr**3 fvec = np.zeros(3,dtype=np.complex128) fvec[0] = fout*dx fvec[1] = fout*dy fvec[2] = fout*dz hvec = np.cross(strength,fvec) return hvec def dipole3e(x,y,z,source,strength,k): # # evalaute electric and magnetic field due # to monochromatic electric dipole located at "source" # with intensity "strength" evec = green3e(x,y,z,source,strength,k) evec = evec*1j*k hvec = green3m(x,y,z,source,strength,k) return evec,hvec def dipole3m(x,y,z,source,strength,k): # # evalaute electric and magnetic field due # to monochromatic magnetic dipole located at "source" # with intensity "strength" evec = green3m(x,y,z,source,strength,k) hvec = green3e(x,y,z,source,strength,k) hvec = -hvec*1j*k return evec,hvec def dipole3eall(x,y,z,sources,strengths,k): ns = len(strengths) evec = np.zeros(3,dtype=np.complex128) hvec = np.zeros(3,dtype=np.complex128) for i in range(ns): evect,hvect = dipole3e(x,y,z,sources[i],strengths[i],k) evec = evec + evect hvec = hvec + hvect nodes = density_discr.nodes().with_queue(queue).get() source = [0.01,-0.03,0.02] # source = cl.array.to_device(queue,np.zeros(3)) # source[0] = 0.01 # source[1] =-0.03 # source[2] = 0.02 strength = np.ones(3) # evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128)) # hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128)) evec = np.zeros((3,len(nodes[0])),dtype=np.complex128) hvec = np.zeros((3,len(nodes[0])),dtype=np.complex128) for i in range(len(nodes[0])): evec[:,i],hvec[:,i] = dipole3e(nodes[0][i],nodes[1][i],nodes[2][i],source,strength,k) print(np.shape(hvec)) print(type(evec)) print(type(hvec)) evec = cl.array.to_device(queue,evec) hvec = cl.array.to_device(queue,hvec) bvp_rhs = bind(qbx, sym_rhs)(queue,Einc=evec,Hinc=hvec) print(np.shape(bvp_rhs)) print(type(bvp_rhs)) # print(bvp_rhs) 1/-1 bound_op = bind(qbx, sym_operator) from pytential.solve import gmres if 0: gmres_result = gmres( bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k), bvp_rhs, tol=1e-8, progress=True, stall_iterations=0, hard_failure=True) sigma = gmres_result.solution fld_at_tgt = bind((qbx, PointsTarget(tgt_points)), sym_repr)(queue, sigma=bvp_rhs,k=k) fld_at_tgt = np.array([ fi.get() for fi in fld_at_tgt ]) print(fld_at_tgt) 1/0 # }}} #mlab.figure(bgcolor=(1, 1, 1)) if 1: from meshmode.discretization.visualization import make_visualizer bdry_vis = make_visualizer(queue, density_discr, target_order) bdry_normals = bind(density_discr, sym.normal(3))(queue)\ .as_vector(dtype=object) bdry_vis.write_vtk_file("source.vtu", [ ("sigma", sigma), ("bdry_normals", bdry_normals), ]) fplot = FieldPlotter(bbox_center, extent=2*bbox_size, npoints=(150, 150, 1)) qbx_tgt_tol = qbx.copy(target_association_tolerance=0.1) from pytential.target import PointsTarget from pytential.qbx import QBXTargetAssociationFailedException rho_sym = sym.var("rho") try: fld_in_vol = bind( (qbx_tgt_tol, PointsTarget(fplot.points)), sym.make_obj_array([ sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None), sym.d_dx(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None)), sym.d_dy(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None)), sym.d_dz(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None)), ]) )(queue, jt=jt, rho=rho, k=k) except QBXTargetAssociationFailedException as e: fplot.write_vtk_file( "failed-targets.vts", [ ("failed_targets", e.failed_target_flags.get(queue)) ]) raise fld_in_vol = sym.make_obj_array( [fiv.get() for fiv in fld_in_vol]) #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file( "potential.vts", [ ("potential", fld_in_vol[0]), ("grad", fld_in_vol[1:]), ] )
def main(): # cl.array.to_device(queue, numpy_array) from meshmode.mesh.io import generate_gmsh, FileSource mesh = generate_gmsh( FileSource("ellipsoid.step"), 2, order=2, other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h]) from meshmode.mesh.processing import perform_flips # Flip elements--gmsh generates inside-out geometry. mesh = perform_flips(mesh, np.ones(mesh.nelements)) print("%d elements" % mesh.nelements) from meshmode.mesh.processing import find_bounding_box bbox_min, bbox_max = find_bounding_box(mesh) bbox_center = 0.5 * (bbox_min + bbox_max) bbox_size = max(bbox_max - bbox_min) / 2 logger.info("%d elements" % mesh.nelements) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource(density_discr, 4 * target_order, qbx_order, fmm_order=qbx_order + 10, fmm_backend="fmmlib") from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator pde_op = MuellerAugmentedMFIEOperator( omega=0.4, epss=[1.4, 1.0], mus=[1.2, 1.0], ) from pytential import bind, sym unk = pde_op.make_unknown("sigma") sym_operator = pde_op.operator(unk) sym_rhs = pde_op.rhs(sym.make_sym_vector("Einc", 3), sym.make_sym_vector("Hinc", 3)) sym_repr = pde_op.representation(0, unk) if 1: expr = sym_repr print(sym.pretty(expr)) print("#" * 80) from pytential.target import PointsTarget tgt_points = np.zeros((3, 1)) tgt_points[0, 0] = 100 tgt_points[1, 0] = -200 tgt_points[2, 0] = 300 bound_op = bind((qbx, PointsTarget(tgt_points)), expr) print(bound_op.code) if 1: def green3e(x, y, z, source, strength, k): # electric field corresponding to dyadic green's function # due to monochromatic electric dipole located at "source". # "strength" is the the intensity of the dipole. # E = (I + Hess)(exp(ikr)/r) dot (strength) # dx = x - source[0] dy = y - source[1] dz = z - source[2] rr = np.sqrt(dx**2 + dy**2 + dz**2) fout = np.exp(1j * k * rr) / rr evec = fout * strength qmat = np.zeros((3, 3), dtype=np.complex128) qmat[0, 0] = (2 * dx**2 - dy**2 - dz**2) * (1 - 1j * k * rr) qmat[1, 1] = (2 * dy**2 - dz**2 - dx**2) * (1 - 1j * k * rr) qmat[2, 2] = (2 * dz**2 - dx**2 - dy**2) * (1 - 1j * k * rr) qmat[0, 0] = qmat[0, 0] + (-k**2 * dx**2 * rr**2) qmat[1, 1] = qmat[1, 1] + (-k**2 * dy**2 * rr**2) qmat[2, 2] = qmat[2, 2] + (-k**2 * dz**2 * rr**2) qmat[0, 1] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dx * dy) qmat[1, 2] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dy * dz) qmat[2, 0] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dz * dx) qmat[1, 0] = qmat[0, 1] qmat[2, 1] = qmat[1, 2] qmat[0, 2] = qmat[2, 0] fout = np.exp(1j * k * rr) / rr**5 / k**2 fvec = fout * np.dot(qmat, strength) evec = evec + fvec return evec def green3m(x, y, z, source, strength, k): # magnetic field corresponding to dyadic green's function # due to monochromatic electric dipole located at "source". # "strength" is the the intensity of the dipole. # H = curl((I + Hess)(exp(ikr)/r) dot (strength)) = # strength \cross \grad (exp(ikr)/r) # dx = x - source[0] dy = y - source[1] dz = z - source[2] rr = np.sqrt(dx**2 + dy**2 + dz**2) fout = (1 - 1j * k * rr) * np.exp(1j * k * rr) / rr**3 fvec = np.zeros(3, dtype=np.complex128) fvec[0] = fout * dx fvec[1] = fout * dy fvec[2] = fout * dz hvec = np.cross(strength, fvec) return hvec def dipole3e(x, y, z, source, strength, k): # # evalaute electric and magnetic field due # to monochromatic electric dipole located at "source" # with intensity "strength" evec = green3e(x, y, z, source, strength, k) evec = evec * 1j * k hvec = green3m(x, y, z, source, strength, k) return evec, hvec def dipole3m(x, y, z, source, strength, k): # # evalaute electric and magnetic field due # to monochromatic magnetic dipole located at "source" # with intensity "strength" evec = green3m(x, y, z, source, strength, k) hvec = green3e(x, y, z, source, strength, k) hvec = -hvec * 1j * k return evec, hvec def dipole3eall(x, y, z, sources, strengths, k): ns = len(strengths) evec = np.zeros(3, dtype=np.complex128) hvec = np.zeros(3, dtype=np.complex128) for i in range(ns): evect, hvect = dipole3e(x, y, z, sources[i], strengths[i], k) evec = evec + evect hvec = hvec + hvect nodes = density_discr.nodes().with_queue(queue).get() source = [0.01, -0.03, 0.02] # source = cl.array.to_device(queue,np.zeros(3)) # source[0] = 0.01 # source[1] =-0.03 # source[2] = 0.02 strength = np.ones(3) # evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128)) # hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128)) evec = np.zeros((3, len(nodes[0])), dtype=np.complex128) hvec = np.zeros((3, len(nodes[0])), dtype=np.complex128) for i in range(len(nodes[0])): evec[:, i], hvec[:, i] = dipole3e(nodes[0][i], nodes[1][i], nodes[2][i], source, strength, k) print(np.shape(hvec)) print(type(evec)) print(type(hvec)) evec = cl.array.to_device(queue, evec) hvec = cl.array.to_device(queue, hvec) bvp_rhs = bind(qbx, sym_rhs)(queue, Einc=evec, Hinc=hvec) print(np.shape(bvp_rhs)) print(type(bvp_rhs)) # print(bvp_rhs) 1 / -1 bound_op = bind(qbx, sym_operator) from pytential.solve import gmres if 0: gmres_result = gmres(bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k), bvp_rhs, tol=1e-8, progress=True, stall_iterations=0, hard_failure=True) sigma = gmres_result.solution fld_at_tgt = bind((qbx, PointsTarget(tgt_points)), sym_repr)(queue, sigma=bvp_rhs, k=k) fld_at_tgt = np.array([fi.get() for fi in fld_at_tgt]) print(fld_at_tgt) 1 / 0 # }}} #mlab.figure(bgcolor=(1, 1, 1)) if 1: from meshmode.discretization.visualization import make_visualizer bdry_vis = make_visualizer(queue, density_discr, target_order) bdry_normals = bind(density_discr, sym.normal(3))(queue)\ .as_vector(dtype=object) bdry_vis.write_vtk_file("source.vtu", [ ("sigma", sigma), ("bdry_normals", bdry_normals), ]) fplot = FieldPlotter(bbox_center, extent=2 * bbox_size, npoints=(150, 150, 1)) qbx_tgt_tol = qbx.copy(target_association_tolerance=0.1) from pytential.target import PointsTarget from pytential.qbx import QBXTargetAssociationFailedException rho_sym = sym.var("rho") try: fld_in_vol = bind((qbx_tgt_tol, PointsTarget(fplot.points)), sym.make_obj_array([ sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None), sym.d_dx( 3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None)), sym.d_dy( 3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None)), sym.d_dz( 3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"), qbx_forced_limit=None)), ]))(queue, jt=jt, rho=rho, k=k) except QBXTargetAssociationFailedException as e: fplot.write_vtk_file( "failed-targets.vts", [("failed_targets", e.failed_target_flags.get(queue))]) raise fld_in_vol = sym.make_obj_array([fiv.get() for fiv in fld_in_vol]) #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file("potential.vts", [ ("potential", fld_in_vol[0]), ("grad", fld_in_vol[1:]), ])