コード例 #1
0
ファイル: scalar.py プロジェクト: choward1491/pytential
 def get_sqrt_weight(self, dofdesc=None):
     """
     :returns: the square root of :meth:`get_weight`.
     """
     if self.use_l2_weighting:
         return sym.sqrt_jac_q_weight(self.dim, dofdesc=dofdesc)
     else:
         return 1
コード例 #2
0
def main():
    logging.basicConfig(level=logging.INFO)

    nelements = 60
    qbx_order = 3
    k_fac = 4
    k0 = 3 * k_fac
    k1 = 2.9 * k_fac
    mesh_order = 10
    bdry_quad_order = mesh_order
    bdry_ovsmp_quad_order = bdry_quad_order * 4
    fmm_order = qbx_order * 2

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(partial(ellipse, 3),
                           np.linspace(0, 1, nelements + 1), mesh_order)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    beta = 2.5 * k_fac
    K0 = np.sqrt(k0**2 - beta**2)
    K1 = np.sqrt(k1**2 - beta**2)

    from pytential.symbolic.pde.scalar import DielectricSDRep2DBoundaryOperator
    pde_op = DielectricSDRep2DBoundaryOperator(
        mode='tm',
        k_vacuum=1,
        interfaces=((0, 1, sym.DEFAULT_SOURCE), ),
        domain_k_exprs=(k0, k1),
        beta=beta)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    # in inner domain
    sources_1 = make_obj_array(list(np.array([[-1.5, 0.5]]).T.copy()))
    strengths_1 = np.array([1])

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)

    _, (Einc, ) = pot_p2p(queue,
                          density_discr.nodes(),
                          sources_1, [strengths_1],
                          out_host=False,
                          k=K0)

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            assert term.field_kind == pde_op.field_kind_e

            if term.direction == pde_op.dir_none:
                bvp_rhs[i_bc] += (term.coeff_outer * (-Einc))
            elif term.direction == pde_op.dir_normal:
                # no jump in normal derivative
                bvp_rhs[i_bc] += 0 * Einc
            else:
                raise NotImplementedError("direction spec in RHS")

        bvp_rhs[i_bc] *= sqrt_w

    from pytential.solve import gmres
    gmres_result = gmres(bound_pde_op.scipy_op(queue,
                                               "unknown",
                                               dtype=np.complex128,
                                               domains=[sym.DEFAULT_TARGET] *
                                               2,
                                               K0=K0,
                                               K1=K1),
                         bvp_rhs,
                         tol=1e-6,
                         progress=True,
                         hard_failure=True,
                         stall_iterations=0)

    # }}}

    unknown = gmres_result.solution

    # {{{ visualize

    from pytential.qbx import QBXLayerPotentialSource
    lap_qbx = QBXLayerPotentialSource(density_discr,
                                      fine_order=bdry_ovsmp_quad_order,
                                      qbx_order=qbx_order,
                                      fmm_order=qbx_order)

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
    from pytential.target import PointsTarget
    fld0 = bind((qbx, PointsTarget(fplot.points)),
                representation0_sym)(queue, unknown=unknown, K0=K0).get()
    fld1 = bind((qbx, PointsTarget(fplot.points)),
                representation1_sym)(queue, unknown=unknown, K1=K1).get()
    ones = cl.array.empty(queue, density_discr.nnodes, np.float64)
    dom1_indicator = -bind(
        (lap_qbx, PointsTarget(fplot.points)), sym.D(0, sym.var("sigma")))(
            queue, sigma=ones.fill(1)).get()
    _, (fld_inc_vol, ) = pot_p2p(queue,
                                 fplot.points,
                                 sources_1, [strengths_1],
                                 out_host=True,
                                 k=K0)

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("potential.vts", [
        ("fld0", fld0),
        ("fld1", fld1),
        ("fld_inc_vol", fld_inc_vol),
        ("fld_total", ((fld_inc_vol + fld0) *
                       (1 - dom1_indicator) + fld1 * dom1_indicator)),
        ("dom1_indicator", dom1_indicator),
    ])
コード例 #3
0
def run_dielectric_test(cl_ctx, queue, nelements, qbx_order,
        op_class, mode,
        k0=3, k1=2.9, mesh_order=10,
        bdry_quad_order=None, bdry_ovsmp_quad_order=None,
        use_l2_weighting=False,
        fmm_order=None, visualize=False):

    if fmm_order is None:
        fmm_order = qbx_order * 2
    if bdry_quad_order is None:
        bdry_quad_order = mesh_order
    if bdry_ovsmp_quad_order is None:
        bdry_ovsmp_quad_order = 4*bdry_quad_order

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative
    kernel = HelmholtzKernel(2)

    beta = 2.5
    K0 = np.sqrt(k0**2-beta**2)  # noqa
    K1 = np.sqrt(k1**2-beta**2)  # noqa

    pde_op = op_class(
            mode,
            k_vacuum=1,
            interfaces=((0, 1, sym.DEFAULT_SOURCE),),
            domain_k_exprs=(k0, k1),
            beta=beta,
            use_l2_weighting=use_l2_weighting)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            ).with_refinement()

    #print(sym.pretty(pde_op.operator(op_unknown_sym)))
    #1/0
    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    e_factor = float(pde_op.ez_enabled)
    h_factor = float(pde_op.hz_enabled)

    e_sources_0 = make_obj_array(list(np.array([
        [0.1, 0.2]
        ]).T.copy()))
    e_strengths_0 = np.array([1*e_factor])
    e_sources_1 = make_obj_array(list(np.array([
        [4, 4]
        ]).T.copy()))
    e_strengths_1 = np.array([1*e_factor])

    h_sources_0 = make_obj_array(list(np.array([
        [0.2, 0.1]
        ]).T.copy()))
    h_strengths_0 = np.array([1*h_factor])
    h_sources_1 = make_obj_array(list(np.array([
        [4, 5]
        ]).T.copy()))
    h_strengths_1 = np.array([1*h_factor])

    kernel_grad = [
        AxisTargetDerivative(i, kernel) for i in range(density_discr.ambient_dim)]

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)
    pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False)

    normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
    tangent = bind(
        density_discr,
        sym.pseudoscalar()/sym.area_element())(queue).as_vector(np.object)

    _, (E0,) = pot_p2p(queue, density_discr.nodes(), e_sources_0, [e_strengths_0],
                    out_host=False, k=K0)
    _, (E1,) = pot_p2p(queue, density_discr.nodes(), e_sources_1, [e_strengths_1],
                    out_host=False, k=K1)
    _, (grad0_E0, grad1_E0) = pot_p2p_grad(
        queue, density_discr.nodes(), e_sources_0, [e_strengths_0],
        out_host=False, k=K0)
    _, (grad0_E1, grad1_E1) = pot_p2p_grad(
        queue, density_discr.nodes(), e_sources_1, [e_strengths_1],
        out_host=False, k=K1)

    _, (H0,) = pot_p2p(queue, density_discr.nodes(), h_sources_0, [h_strengths_0],
                    out_host=False, k=K0)
    _, (H1,) = pot_p2p(queue, density_discr.nodes(), h_sources_1, [h_strengths_1],
                    out_host=False, k=K1)
    _, (grad0_H0, grad1_H0) = pot_p2p_grad(
        queue, density_discr.nodes(), h_sources_0, [h_strengths_0],
        out_host=False, k=K0)
    _, (grad0_H1, grad1_H1) = pot_p2p_grad(
        queue, density_discr.nodes(), h_sources_1, [h_strengths_1],
        out_host=False, k=K1)

    E0_dntarget = (grad0_E0*normal[0] + grad1_E0*normal[1])  # noqa
    E1_dntarget = (grad0_E1*normal[0] + grad1_E1*normal[1])  # noqa

    H0_dntarget = (grad0_H0*normal[0] + grad1_H0*normal[1])  # noqa
    H1_dntarget = (grad0_H1*normal[0] + grad1_H1*normal[1])  # noqa

    E0_dttarget = (grad0_E0*tangent[0] + grad1_E0*tangent[1])  # noqa
    E1_dttarget = (grad0_E1*tangent[0] + grad1_E1*tangent[1])  # noqa

    H0_dttarget = (grad0_H0*tangent[0] + grad1_H0*tangent[1])  # noqa
    H1_dttarget = (grad0_H1*tangent[0] + grad1_H1*tangent[1])  # noqa

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            if term.field_kind == pde_op.field_kind_e:

                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0
                        + term.coeff_inner * E1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0_dntarget
                        + term.coeff_inner * E1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0_dttarget
                        + term.coeff_inner * E1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            elif term.field_kind == pde_op.field_kind_h:
                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0
                        + term.coeff_inner * H1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0_dntarget
                        + term.coeff_inner * H1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0_dttarget
                        + term.coeff_inner * H1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            if use_l2_weighting:
                bvp_rhs[i_bc] *= sqrt_w

    scipy_op = bound_pde_op.scipy_op(queue, "unknown",
            domains=[sym.DEFAULT_TARGET]*len(pde_op.bcs), K0=K0, K1=K1,
            dtype=np.complex128)

    if mode == "tem" or op_class is SRep:
        from sumpy.tools import vector_from_device, vector_to_device
        from pytential.solve import lu
        unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs))
        unknown = vector_to_device(queue, unknown)

    else:
        from pytential.solve import gmres
        gmres_result = gmres(scipy_op,
                bvp_rhs, tol=1e-14, progress=True,
                hard_failure=True, stall_iterations=0)

        unknown = gmres_result.solution

    # }}}

    targets_0 = make_obj_array(list(np.array([
        [3.2 + t, -4]
        for t in [0, 0.5, 1]
        ]).T.copy()))
    targets_1 = make_obj_array(list(np.array([
        [t*-0.3, t*-0.2]
        for t in [0, 0.5, 1]
        ]).T.copy()))

    from pytential.target import PointsTarget
    from sumpy.tools import vector_from_device
    F0_tgt = vector_from_device(queue, bind(  # noqa
            (qbx, PointsTarget(targets_0)),
            representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1))
    F1_tgt = vector_from_device(queue, bind(  # noqa
            (qbx, PointsTarget(targets_1)),
            representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1))

    _, (E0_tgt_true,) = pot_p2p(queue, targets_0, e_sources_0, [e_strengths_0],
                    out_host=True, k=K0)
    _, (E1_tgt_true,) = pot_p2p(queue, targets_1, e_sources_1, [e_strengths_1],
                    out_host=True, k=K1)

    _, (H0_tgt_true,) = pot_p2p(queue, targets_0, h_sources_0, [h_strengths_0],
                    out_host=True, k=K0)
    _, (H1_tgt_true,) = pot_p2p(queue, targets_1, h_sources_1, [h_strengths_1],
                    out_host=True, k=K1)

    err_F0_total = 0  # noqa
    err_F1_total = 0  # noqa

    i_field = 0

    def vec_norm(ary):
        return la.norm(ary.reshape(-1))

    def field_kind_to_string(field_kind):
        return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind]

    for field_kind in pde_op.field_kinds:
        if not pde_op.is_field_present(field_kind):
            continue

        if field_kind == pde_op.field_kind_e:
            F0_tgt_true = E0_tgt_true  # noqa
            F1_tgt_true = E1_tgt_true  # noqa
        elif field_kind == pde_op.field_kind_h:
            F0_tgt_true = H0_tgt_true  # noqa
            F1_tgt_true = H1_tgt_true  # noqa
        else:
            assert False

        abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true)  # noqa
        abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true)  # noqa

        rel_err_F0 = abs_err_F0/vec_norm(F0_tgt_true)  # noqa
        rel_err_F1 = abs_err_F1/vec_norm(F1_tgt_true)  # noqa

        err_F0_total = max(rel_err_F0, err_F0_total)  # noqa
        err_F1_total = max(rel_err_F1, err_F1_total)  # noqa

        print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0)
        print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1)

        print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0)
        print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1)

        i_field += 1

    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
        from pytential.target import PointsTarget
        fld0 = bind(
                (qbx, PointsTarget(fplot.points)),
                representation0_sym)(queue, unknown=unknown, K0=K0)
        fld1 = bind(
                (qbx, PointsTarget(fplot.points)),
                representation1_sym)(queue, unknown=unknown, K1=K1)

        comp_fields = []
        i_field = 0
        for field_kind in pde_op.field_kinds:
            if not pde_op.is_field_present(field_kind):
                continue

            fld_str = field_kind_to_string(field_kind)
            comp_fields.extend([
                ("%s_fld0" % fld_str, fld0[i_field].get()),
                ("%s_fld1" % fld_str, fld1[i_field].get()),
                ])

            i_field += 0

        low_order_qbx = QBXLayerPotentialSource(
                density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=2,
                fmm_order=3).with_refinement()
        from sumpy.kernel import LaplaceKernel
        from pytential.target import PointsTarget
        ones = (cl.array.empty(queue, (density_discr.nnodes,), dtype=np.float64)
                .fill(1))
        ind_func = - bind((low_order_qbx, PointsTarget(fplot.points)),
                sym.D(LaplaceKernel(2), sym.var("u")))(
                        queue, u=ones).get()

        _, (e_fld0_true,) = pot_p2p(
                queue, fplot.points, e_sources_0, [e_strengths_0],
                out_host=True, k=K0)
        _, (e_fld1_true,) = pot_p2p(
                queue, fplot.points, e_sources_1, [e_strengths_1],
                out_host=True, k=K1)
        _, (h_fld0_true,) = pot_p2p(
                queue, fplot.points, h_sources_0, [h_strengths_0],
                out_host=True, k=K0)
        _, (h_fld1_true,) = pot_p2p(
                queue, fplot.points, h_sources_1, [h_strengths_1],
                out_host=True, k=K1)

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential-n%d.vts" % nelements,
                [
                    ("e_fld0_true", e_fld0_true),
                    ("e_fld1_true", e_fld1_true),
                    ("h_fld0_true", h_fld0_true),
                    ("h_fld1_true", h_fld1_true),
                    ("ind", ind_func),
                    ] + comp_fields
                )

    return err_F0_total, err_F1_total
コード例 #4
0
            pt.plot(tang_deriv_from_src.real, label="src")
            pt.legend()
            pt.savefig(f"tangential-derivative-{resolution}", dpi=300)

        rel_td_err_inf = la.norm(td_err, np.inf) / la.norm(
            tang_deriv_ref, np.inf)
        logger.info("rel_td_err_inf: %.5e" % rel_td_err_inf)
    else:
        rel_td_err_inf = None

    # }}}

    # {{{ any-D file plotting

    if visualize:
        sym_sqrt_j = sym.sqrt_jac_q_weight(ambient_dim)
        u = bind(places, sym_u / sym_sqrt_j)(actx, u=weighted_u)

        bdry_vis = make_visualizer(actx, density_discr, case.target_order + 3)
        bdry_vis.write_vtk_file(f"integral-equation-source-{resolution}.vtu", [
            ("u", u),
            ("bc", bc),
        ])

        try:
            solved_pot = bind(places,
                              op.representation(sym_u),
                              auto_where=("qbx_target_tol", "plot_targets"))(
                                  actx,
                                  u=weighted_u,
                                  **case.knl_concrete_kwargs)
コード例 #5
0
def main(nelements):
    import logging
    logging.basicConfig(level=logging.INFO)

    def get_obj_array(obj_array):
        from pytools.obj_array import make_obj_array
        return make_obj_array([
                ary.get()
                for ary in obj_array
                ])

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import (  # noqa
            make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(
            lambda t: starfish(t),
            np.linspace(0, 1, nelements+1),
            target_order)
    coarse_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx, _ = QBXLayerPotentialSource(
            coarse_density_discr, fine_order=ovsmp_target_order, qbx_order=qbx_order,
            fmm_order=fmm_order,
            target_association_tolerance=target_association_tolerance,
            ).with_refinement()

    density_discr = qbx.density_discr
    nodes = density_discr.nodes().with_queue(queue)

    # Get normal vectors for the density discretization -- used in integration with stresslet
    mv_normal = bind(density_discr, sym.normal(2))(queue)
    normal = mv_normal.as_vector(np.object)


    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    from pytential.symbolic.stokes import StressletWrapper
    from pytools.obj_array import make_obj_array
    dim=2
    cse = sym.cse

    nvec_sym = sym.make_sym_vector("normal", dim)
    sigma_sym = sym.make_sym_vector("sigma", dim)
    mu_sym = sym.var("mu")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = -1

    # Create stresslet object
    stresslet_obj = StressletWrapper(dim=2)

    # Describe boundary operator
    bdry_op_sym = loc_sign * 0.5 * sigma_sym + sqrt_w * stresslet_obj.apply(inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit='avg')

    # Bind to the qbx discretization
    bound_op = bind(qbx, bdry_op_sym)

    # }}}


    # {{{ fix rhs and solve

    def fund_soln(x, y, loc):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = 1./(4*np.pi*mu)
        xcomp = (-cl.clmath.log(r) + (x - loc[0])**2/r**2) * scaling
        ycomp = ((x - loc[0])*(y - loc[1])/r**2) * scaling
        return [ xcomp, ycomp ]

    def couette_soln(x, y, dp, h):
        scaling = 1./(2*mu)
        xcomp = scaling * dp * ((y+(h/2.))**2 - h * (y+(h/2.)))
        ycomp = scaling * 0*y
        return [xcomp, ycomp]



    if soln_type == 'fundamental':
        pt_loc = np.array([2.0, 0.0])
        bc = fund_soln(nodes[0], nodes[1], pt_loc)
    else:
        dp = -10.
        h = 2.5
        bc = couette_soln(nodes[0], nodes[1], dp, h)

    # Get rhs vector
    bvp_rhs = bind(qbx, sqrt_w*sym.make_sym_vector("bc",dim))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
             bound_op.scipy_op(queue, "sigma", np.float64, mu=mu, normal=normal),
             bvp_rhs, tol=1e-9, progress=True,
             stall_iterations=0,
             hard_failure=True)

    # }}}

    # {{{ postprocess/visualize
    sigma = gmres_result.solution

    # Describe representation of solution for evaluation in domain
    representation_sym = stresslet_obj.apply(inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit=-2)

    from sumpy.visualization import FieldPlotter
    nsamp = 10
    eval_points_1d = np.linspace(-1., 1., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0,:] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1,:] = np.repeat(eval_points_1d, len(eval_points_1d))


    gamma_sym = sym.var("gamma")
    inv_sqrt_w_gamma = cse(gamma_sym/sqrt_w)
    constant_laplace_rep = sym.D(LaplaceKernel(dim=2), inv_sqrt_w_gamma, qbx_forced_limit=None)
    sqrt_w_vec = bind(qbx, sqrt_w)(queue)

    def general_mask(test_points):
        const_density = bind((qbx, PointsTarget(test_points)), constant_laplace_rep)(queue, gamma=sqrt_w_vec).get()
        return (abs(const_density) > 0.1)

    def inside_domain(test_points):
        mask = general_mask(test_points)
        return np.array([
            row[mask]
            for row in test_points])

    def stride_hack(arr):
        from numpy.lib.stride_tricks import as_strided
        return np.array(as_strided(arr, strides=(8 * len(arr[0]), 8)))

    eval_points = inside_domain(eval_points)
    eval_points_dev = cl.array.to_device(queue, eval_points)

    # Evaluate the solution at the evaluation points
    vel = bind(
            (qbx, PointsTarget(eval_points_dev)),
            representation_sym)(queue, sigma=sigma, mu=mu, normal=normal)
    print("@@@@@@@@")
    vel = get_obj_array(vel)


    if soln_type == 'fundamental':
        exact_soln = fund_soln(eval_points_dev[0], eval_points_dev[1], pt_loc)
    else:
        exact_soln = couette_soln(eval_points_dev[0], eval_points_dev[1], dp, h)
    err = vel - get_obj_array(exact_soln)

    print("@@@@@@@@")

    print("L2 error estimate: ", np.sqrt((2./(nsamp-1))**2*np.sum(err[0]*err[0]) + (2./(nsamp-1))**2*np.sum(err[1]*err[1])))
    max_error_loc = [abs(err[0]).argmax(), abs(err[1]).argmax()]
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("exact velocity at max error points: x -> ", err[0][max_error_loc[0]], ", y -> ", err[1][max_error_loc[1]])

    from pytential.symbolic.mappers import DerivativeTaker
    rep_pressure = stresslet_obj.apply_pressure(inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit=-2)
    pressure = bind((qbx, PointsTarget(eval_points_dev)),
                     rep_pressure)(queue, sigma=sigma, mu=mu, normal=normal)
    pressure = pressure.get()
    print "pressure = ", pressure

    x_dir_vecs = np.zeros((2,len(eval_points[0])))
    x_dir_vecs[0,:] = 1.0
    y_dir_vecs = np.zeros((2, len(eval_points[0])))
    y_dir_vecs[1,:] = 1.0
    x_dir_vecs = cl.array.to_device(queue, x_dir_vecs)
    y_dir_vecs = cl.array.to_device(queue, y_dir_vecs)
    dir_vec_sym = sym.make_sym_vector("force_direction", dim)
    rep_stress = stresslet_obj.apply_stress(inv_sqrt_w_sigma, nvec_sym, dir_vec_sym, mu_sym, qbx_forced_limit=-2)

    applied_stress_x = bind((qbx, PointsTarget(eval_points_dev)),
                             rep_stress)(queue, sigma=sigma, normal=normal, force_direction=x_dir_vecs, mu=mu)
    applied_stress_x = get_obj_array(applied_stress_x)
    applied_stress_y = bind((qbx, PointsTarget(eval_points_dev)),
                             rep_stress)(queue, sigma=sigma, normal=normal, force_direction=y_dir_vecs, mu=mu)
    applied_stress_y = get_obj_array(applied_stress_y)

    print "stress applied to x direction: ", applied_stress_x
    print "stress applied to y direction: ", applied_stress_y


    import matplotlib.pyplot as plt
    plt.quiver(eval_points[0], eval_points[1], vel[0], vel[1], linewidth=0.1)
    file_name = "field-n%s.pdf"%(nelements)
    plt.savefig(file_name)

    return (max(abs(err[0])), max(abs(err[1])))
コード例 #6
0
def main():
    logging.basicConfig(level=logging.INFO)

    nelements = 60
    qbx_order = 3
    k_fac = 4
    k0 = 3*k_fac
    k1 = 2.9*k_fac
    mesh_order = 10
    bdry_quad_order = mesh_order
    bdry_ovsmp_quad_order = bdry_quad_order * 4
    fmm_order = qbx_order * 2

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    beta = 2.5*k_fac
    K0 = np.sqrt(k0**2-beta**2)
    K1 = np.sqrt(k1**2-beta**2)

    from pytential.symbolic.pde.scalar import DielectricSDRep2DBoundaryOperator
    pde_op = DielectricSDRep2DBoundaryOperator(
            mode='tm',
            k_vacuum=1,
            interfaces=((0, 1, sym.DEFAULT_SOURCE),),
            domain_k_exprs=(k0, k1),
            beta=beta)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    # in inner domain
    sources_1 = make_obj_array(list(np.array([
        [-1.5, 0.5]
        ]).T.copy()))
    strengths_1 = np.array([1])

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)

    _, (Einc,) = pot_p2p(queue, density_discr.nodes(), sources_1, [strengths_1],
                    out_host=False, k=K0)

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            assert term.field_kind == pde_op.field_kind_e

            if term.direction == pde_op.dir_none:
                bvp_rhs[i_bc] += (
                        term.coeff_outer * (-Einc)
                        )
            elif term.direction == pde_op.dir_normal:
                # no jump in normal derivative
                bvp_rhs[i_bc] += 0*Einc
            else:
                raise NotImplementedError("direction spec in RHS")

        bvp_rhs[i_bc] *= sqrt_w

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_pde_op.scipy_op(queue, "unknown", dtype=np.complex128,
                domains=[sym.DEFAULT_TARGET]*2, K0=K0, K1=K1),
            bvp_rhs, tol=1e-6, progress=True,
            hard_failure=True, stall_iterations=0)

    # }}}

    unknown = gmres_result.solution

    # {{{ visualize

    from pytential.qbx import QBXLayerPotentialSource
    lap_qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=qbx_order
            )

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
    from pytential.target import PointsTarget
    fld0 = bind(
            (qbx, PointsTarget(fplot.points)),
            representation0_sym)(queue, unknown=unknown, K0=K0).get()
    fld1 = bind(
            (qbx, PointsTarget(fplot.points)),
            representation1_sym)(queue, unknown=unknown, K1=K1).get()
    ones = cl.array.empty(queue, density_discr.nnodes, np.float64)
    dom1_indicator = -bind(
            (lap_qbx, PointsTarget(fplot.points)),
            sym.D(0, sym.var("sigma")))(
                    queue, sigma=ones.fill(1)).get()
    _, (fld_inc_vol,) = pot_p2p(queue, fplot.points, sources_1, [strengths_1],
                    out_host=True, k=K0)

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential.vts",
            [
                ("fld0", fld0),
                ("fld1", fld1),
                ("fld_inc_vol", fld_inc_vol),
                ("fld_total", (
                    (fld_inc_vol + fld0)*(1-dom1_indicator)
                    +
                    fld1*dom1_indicator
                    )),
                ("dom1_indicator", dom1_indicator),
                ]
            )
コード例 #7
0
def get_bvp_error(lpot_source, fmm_order, qbx_order, k=0):
    # This returns a tuple (err_l2, err_linf, nit).
    queue = cl.CommandQueue(lpot_source.cl_context)

    lpot_source = lpot_source.copy(
        qbx_order=qbx_order,
        fmm_level_to_order=(False if fmm_order is False else
                            lambda *args: fmm_order))

    d = lpot_source.ambient_dim

    assert k == 0  # Helmholtz would require a different representation

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    lap_k_sym = LaplaceKernel(d)
    if k == 0:
        k_sym = lap_k_sym
        knl_kwargs = {}
    else:
        k_sym = HelmholtzKernel(d)
        knl_kwargs = {"k": sym.var("k")}

    density_discr = lpot_source.density_discr

    # {{{ find source and target points

    source_angles = (np.pi / 2 +
                     np.linspace(0,
                                 2 * np.pi * BVP_EXPERIMENT_N_ARMS,
                                 BVP_EXPERIMENT_N_ARMS,
                                 endpoint=False)) / BVP_EXPERIMENT_N_ARMS
    source_points = 0.75 * np.array([
        np.cos(source_angles),
        np.sin(source_angles),
    ])
    target_angles = (np.pi + np.pi / 2 +
                     np.linspace(0,
                                 2 * np.pi * BVP_EXPERIMENT_N_ARMS,
                                 BVP_EXPERIMENT_N_ARMS,
                                 endpoint=False)) / BVP_EXPERIMENT_N_ARMS
    target_points = 1.5 * np.array([
        np.cos(target_angles),
        np.sin(target_angles),
    ])

    np.random.seed(17)
    source_charges = np.random.randn(BVP_EXPERIMENT_N_ARMS)

    source_points_dev = cl.array.to_device(queue, source_points)
    target_points_dev = cl.array.to_device(queue, target_points)
    source_charges_dev = cl.array.to_device(queue, source_charges)

    from pytential.source import PointPotentialSource
    from pytential.target import PointsTarget

    point_source = PointPotentialSource(lpot_source.cl_context,
                                        source_points_dev)

    pot_src = sym.IntG(
        # FIXME: qbx_forced_limit--really?
        k_sym,
        sym.var("charges"),
        qbx_forced_limit=None,
        **knl_kwargs)

    ref_direct = bind((point_source, PointsTarget(target_points_dev)),
                      pot_src)(queue, charges=source_charges_dev,
                               **knl_kwargs).get()

    sym_sqrt_j = sym.sqrt_jac_q_weight(density_discr.ambient_dim)

    bc = bind((point_source, density_discr),
              sym.normal_derivative(density_discr.ambient_dim,
                                    pot_src,
                                    where=sym.DEFAULT_TARGET))(
                                        queue,
                                        charges=source_charges_dev,
                                        **knl_kwargs)

    rhs = bind(density_discr, sym.var("bc") * sym_sqrt_j)(queue, bc=bc)

    # }}}

    # {{{ solve

    bound_op = bind(
        lpot_source,
        -0.5 * sym.var("u") + sym_sqrt_j * sym.Sp(k_sym,
                                                  sym.var("u") / sym_sqrt_j,
                                                  qbx_forced_limit="avg",
                                                  **knl_kwargs))

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue, "u", np.float64,
                                           **knl_kwargs),
                         rhs,
                         tol=1e-10,
                         stall_iterations=100,
                         progress=True,
                         hard_failure=True)

    u = gmres_result.solution

    # }}}

    points_target = PointsTarget(target_points_dev)
    bound_tgt_op = bind((lpot_source, points_target),
                        sym.S(k_sym,
                              sym.var("u") / sym_sqrt_j,
                              qbx_forced_limit=None))

    test_via_bdry = bound_tgt_op(queue, u=u).get()

    err = ref_direct - test_via_bdry

    err_l2 = la.norm(err, 2) / la.norm(ref_direct, 2)
    err_linf = la.norm(err, np.inf) / la.norm(ref_direct, np.inf)
    return err_l2, err_linf, gmres_result.iteration_count
コード例 #8
0
        print("rel_td_err_inf: %g" % rel_td_err_inf)

    else:
        rel_td_err_inf = None

    # }}}

    # {{{ any-D file plotting

    if visualize:
        bdry_vis = make_visualizer(queue, density_discr, case.target_order + 3)

        bdry_normals = bind(density_discr, sym.normal(qbx.ambient_dim))(queue)\
                .as_vector(dtype=object)

        sym_sqrt_j = sym.sqrt_jac_q_weight(density_discr.ambient_dim)
        u = bind(density_discr, sym.var("u") / sym_sqrt_j)(queue, u=weighted_u)

        bdry_vis.write_vtk_file(
            "source-%s.vtu" % resolution,
            [
                ("u", u),
                ("bc", bc),
                #("bdry_normals", bdry_normals),
            ])

        from sumpy.visualization import make_field_plotter_from_bbox  # noqa
        from meshmode.mesh.processing import find_bounding_box

        vis_grid_spacing = (0.1, 0.1, 0.1)[:qbx.ambient_dim]
        if hasattr(case, "vis_grid_spacing"):
コード例 #9
0
def timing_run(nx, ny):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    mesh = make_mesh(nx=nx, ny=ny)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign * 0.5 * sigma_sym + sqrt_w *
                   (alpha * sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k")) -
                    sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3
    nodes = density_discr.nodes().with_queue(queue)
    angle = cl.clmath.atan2(nodes[1], nodes[0])

    sigma = cl.clmath.cos(mode_nr * angle)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=+1)

    sym_op = sym.S(kernel, sym.var("sigma"), **repr_kwargs)
    bound_op = bind(qbx, sym_op)

    print("FMM WARM-UP RUN 1: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    print("FMM WARM-UP RUN 2: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    print("FMM TIMING RUN: %d elements" % mesh.nelements)

    from time import time
    t_start = time()

    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    elapsed = time() - t_start

    print("FMM TIMING RUN DONE: %d elements -> %g s" %
          (mesh.nelements, elapsed))

    return (mesh.nelements, elapsed)

    if 0:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)

        targets = cl.array.to_device(queue, fplot.points)

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.05)

        indicator_qbx = qbx_tgt_tol.copy(fmm_level_to_order=lambda lev: 7,
                                         qbx_order=2)

        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind((indicator_qbx, PointsTarget(targets)),
                         sym_op)(queue, sigma=ones_density).get()

        qbx_stick_out = qbx.copy(target_stick_out_factor=0.1)
        try:
            fld_in_vol = bind((qbx_stick_out, PointsTarget(targets)),
                              sym_op)(queue, sigma=sigma, k=k).get()
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                "failed-targets.vts",
                [("failed", e.failed_target_flags.get(queue))])
            raise

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential-scaling.vts",
                             [("potential", fld_in_vol),
                              ("indicator", indicator)])
コード例 #10
0
ファイル: scaling-study.py プロジェクト: inducer/pytential
def timing_run(nx, ny):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    mesh = make_mesh(nx=nx, ny=ny)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign*0.5*sigma_sym
            + sqrt_w*(
                alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3
    nodes = density_discr.nodes().with_queue(queue)
    angle = cl.clmath.atan2(nodes[1], nodes[0])

    sigma = cl.clmath.cos(mode_nr*angle)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=+1)

    sym_op = sym.S(kernel, sym.var("sigma"), **repr_kwargs)
    bound_op = bind(qbx, sym_op)

    print("FMM WARM-UP RUN 1: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    print("FMM WARM-UP RUN 2: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    print("FMM TIMING RUN: %d elements" % mesh.nelements)

    from time import time
    t_start = time()

    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    elapsed = time()-t_start

    print("FMM TIMING RUN DONE: %d elements -> %g s"
            % (mesh.nelements, elapsed))

    return (mesh.nelements, elapsed)

    if 0:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)

        targets = cl.array.to_device(queue, fplot.points)

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.05)

        indicator_qbx = qbx_tgt_tol.copy(
                fmm_level_to_order=lambda lev: 7, qbx_order=2)

        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind(
                (indicator_qbx, PointsTarget(targets)),
                sym_op)(
                queue, sigma=ones_density).get()

        qbx_stick_out = qbx.copy(target_stick_out_factor=0.1)
        try:
            fld_in_vol = bind(
                    (qbx_stick_out, PointsTarget(targets)),
                    sym_op)(queue, sigma=sigma, k=k).get()
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed", e.failed_target_flags.get(queue))
                        ]
                    )
            raise

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential-scaling.vts",
                [
                    ("potential", fld_in_vol),
                    ("indicator", indicator)
                    ]
                )
コード例 #11
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight()
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = -1

    bdry_op_sym = (-loc_sign*0.5*sigma_sym
            + sqrt_w*(
                alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3
    nodes = density_discr.nodes().with_queue(queue)
    angle = cl.clmath.atan2(nodes[1], nodes[0])

    bc = cl.clmath.cos(mode_nr*angle)

    bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma", k=k),
            bvp_rhs, tol=1e-14, progress=True,
            stall_iterations=0,
            hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution

    representation_sym = (
            alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
            - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k")))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)
    from pytential.target import PointsTarget
    fld_in_vol = bind(
            (qbx, PointsTarget(fplot.points)),
            representation_sym)(queue, sigma=sigma, k=k).get()

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential.vts",
            [
                ("potential", fld_in_vol)
                ]
            )
コード例 #12
0
ファイル: test_matrix.py プロジェクト: choward1491/pytential
def test_build_matrix_conditioning(actx_factory,
                                   side,
                                   op_type,
                                   visualize=False):
    """Checks that :math:`I + K`, where :math:`K` is compact gives a
    well-conditioned operator when it should. For example, the exterior Laplace
    problem has a nullspace, so we check that and remove it.
    """

    actx = actx_factory()

    # prevent cache explosion
    from sympy.core.cache import clear_cache
    clear_cache()

    case = extra.CurveTestCase(
        name="ellipse",
        curve_fn=lambda t: ellipse(3.0, t),
        target_order=16,
        source_ovsmp=1,
        qbx_order=4,
        resolutions=[64],
        op_type=op_type,
        side=side,
    )
    logger.info("\n%s", case)

    # {{{ geometry

    qbx = case.get_layer_potential(actx, case.resolutions[-1],
                                   case.target_order)

    from pytential.qbx.refinement import refine_geometry_collection
    places = GeometryCollection(qbx, auto_where=case.name)
    places = refine_geometry_collection(
        places, refine_discr_stage=sym.QBX_SOURCE_QUAD_STAGE2)

    dd = places.auto_source.to_stage1()
    density_discr = places.get_discretization(dd.geometry)

    logger.info("nelements:     %d", density_discr.mesh.nelements)
    logger.info("ndofs:         %d", density_discr.ndofs)

    # }}}

    # {{{ check matrix

    from pytential.symbolic.execution import build_matrix
    sym_u, sym_op = case.get_operator(places.ambient_dim,
                                      qbx_forced_limit="avg")

    mat = actx.to_numpy(
        build_matrix(actx,
                     places,
                     sym_op,
                     sym_u,
                     context=case.knl_concrete_kwargs))

    kappa = la.cond(mat)
    _, sigma, _ = la.svd(mat)

    logger.info("cond: %.5e sigma_max %.5e", kappa, sigma[0])

    # NOTE: exterior Laplace has a nullspace
    if side == +1 and op_type == "double":
        assert kappa > 1.0e+9
        assert sigma[-1] < 1.0e-9
    else:
        assert kappa < 1.0e+1
        assert sigma[-1] > 1.0e-2

    # remove the nullspace and check that it worked
    if side == +1 and op_type == "double":
        # NOTE: this adds the "mean" to remove the nullspace for the operator
        # See `pytential.symbolic.pde.scalar` for the equivalent formulation
        w = actx.to_numpy(
            flatten(
                bind(places,
                     sym.sqrt_jac_q_weight(places.ambient_dim)**2)(actx),
                actx))

        w = np.tile(w.reshape(-1, 1), w.size).T
        kappa = la.cond(mat + w)

        assert kappa < 1.0e+2

    # }}}

    # {{{ plot

    if not visualize:
        return

    side = "int" if side == -1 else "ext"

    import matplotlib.pyplot as plt
    plt.imshow(mat)
    plt.colorbar()
    plt.title(fr"$\kappa(A) = {kappa:.5e}$")
    plt.savefig(f"test_cond_{op_type}_{side}_mat")
    plt.clf()

    plt.plot(sigma)
    plt.ylabel(r"$\sigma$")
    plt.grid()
    plt.savefig(f"test_cond_{op_type}_{side}_svd")
    plt.clf()
コード例 #13
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    if 0:
        mesh = make_curve_mesh(
                partial(ellipse, 1),
                np.linspace(0, 1, nelements+1),
                mesh_order)
    else:
        base_mesh = make_curve_mesh(
                partial(ellipse, 1),
                np.linspace(0, 1, nelements+1),
                mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        nx = 2
        ny = 2
        dx = 2 / nx
        meshes = [
                affine_map(
                    base_mesh,
                    A=np.diag([dx*0.25, dx*0.25]),
                    b=np.array([dx*(ix-nx/2), dx*(iy-ny/2)]))
                for ix in range(nx)
                for iy in range(ny)]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if 0:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()

    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            ).with_refinement()
    density_discr = qbx.density_discr

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign*0.5*sigma_sym
            + sqrt_w*(
                alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"),
                    qbx_forced_limit=+1)
                - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"),
                    qbx_forced_limit="avg")
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    nodes = density_discr.nodes().with_queue(queue)
    k_vec = np.array([2, 1])
    k_vec = k * k_vec / la.norm(k_vec, 2)

    def u_incoming_func(x):
        return cl.clmath.exp(
                1j * (x[0] * k_vec[0] + x[1] * k_vec[1]))

    bc = -u_incoming_func(nodes)

    bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k),
            bvp_rhs, tol=1e-8, progress=True,
            stall_iterations=0,
            hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=None)
    representation_sym = (
            alpha*sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs)
            - sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)

    targets = cl.array.to_device(queue, fplot.points)

    u_incoming = u_incoming_func(targets)

    qbx_stick_out = qbx.copy(target_association_tolerance=0.05)

    ones_density = density_discr.zeros(queue)
    ones_density.fill(1)
    indicator = bind(
            (qbx_stick_out, PointsTarget(targets)),
            sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None))(
            queue, sigma=ones_density).get()

    try:
        fld_in_vol = bind(
                (qbx_stick_out, PointsTarget(targets)),
                representation_sym)(queue, sigma=sigma, k=k).get()
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file(
                "failed-targets.vts",
                [
                    ("failed", e.failed_target_flags.get(queue))
                    ]
                )
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential-helm.vts",
            [
                ("potential", fld_in_vol),
                ("indicator", indicator),
                ("u_incoming", u_incoming.get()),
                ]
            )
コード例 #14
0
def main(nelements):
    import logging
    logging.basicConfig(level=logging.INFO)

    def get_obj_array(obj_array):
        from pytools.obj_array import make_obj_array
        return make_obj_array([ary.get() for ary in obj_array])

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import (  # noqa
        make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(lambda t: starfish(t),
                           np.linspace(0, 1, nelements + 1), target_order)
    coarse_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx, _ = QBXLayerPotentialSource(
        coarse_density_discr,
        fine_order=ovsmp_target_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
        target_association_tolerance=target_association_tolerance,
    ).with_refinement()

    density_discr = qbx.density_discr
    nodes = density_discr.nodes().with_queue(queue)

    # Get normal vectors for the density discretization -- used in integration with stresslet
    mv_normal = bind(density_discr, sym.normal(2))(queue)
    normal = mv_normal.as_vector(np.object)

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    from pytential.symbolic.stokes import StressletWrapper
    from pytools.obj_array import make_obj_array
    dim = 2
    cse = sym.cse

    nvec_sym = sym.make_sym_vector("normal", dim)
    sigma_sym = sym.make_sym_vector("sigma", dim)
    mu_sym = sym.var("mu")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym / sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = -1

    # Create stresslet object
    stresslet_obj = StressletWrapper(dim=2)

    # Describe boundary operator
    bdry_op_sym = loc_sign * 0.5 * sigma_sym + sqrt_w * stresslet_obj.apply(
        inv_sqrt_w_sigma, nvec_sym, mu_sym, qbx_forced_limit='avg')

    # Bind to the qbx discretization
    bound_op = bind(qbx, bdry_op_sym)

    # }}}

    # {{{ fix rhs and solve

    def fund_soln(x, y, loc):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = 1. / (4 * np.pi * mu)
        xcomp = (-cl.clmath.log(r) + (x - loc[0])**2 / r**2) * scaling
        ycomp = ((x - loc[0]) * (y - loc[1]) / r**2) * scaling
        return [xcomp, ycomp]

    def couette_soln(x, y, dp, h):
        scaling = 1. / (2 * mu)
        xcomp = scaling * dp * ((y + (h / 2.))**2 - h * (y + (h / 2.)))
        ycomp = scaling * 0 * y
        return [xcomp, ycomp]

    if soln_type == 'fundamental':
        pt_loc = np.array([2.0, 0.0])
        bc = fund_soln(nodes[0], nodes[1], pt_loc)
    else:
        dp = -10.
        h = 2.5
        bc = couette_soln(nodes[0], nodes[1], dp, h)

    # Get rhs vector
    bvp_rhs = bind(qbx, sqrt_w * sym.make_sym_vector("bc", dim))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           np.float64,
                                           mu=mu,
                                           normal=normal),
                         bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize
    sigma = gmres_result.solution

    # Describe representation of solution for evaluation in domain
    representation_sym = stresslet_obj.apply(inv_sqrt_w_sigma,
                                             nvec_sym,
                                             mu_sym,
                                             qbx_forced_limit=-2)

    from sumpy.visualization import FieldPlotter
    nsamp = 10
    eval_points_1d = np.linspace(-1., 1., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0, :] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1, :] = np.repeat(eval_points_1d, len(eval_points_1d))

    gamma_sym = sym.var("gamma")
    inv_sqrt_w_gamma = cse(gamma_sym / sqrt_w)
    constant_laplace_rep = sym.D(LaplaceKernel(dim=2),
                                 inv_sqrt_w_gamma,
                                 qbx_forced_limit=None)
    sqrt_w_vec = bind(qbx, sqrt_w)(queue)

    def general_mask(test_points):
        const_density = bind((qbx, PointsTarget(test_points)),
                             constant_laplace_rep)(queue,
                                                   gamma=sqrt_w_vec).get()
        return (abs(const_density) > 0.1)

    def inside_domain(test_points):
        mask = general_mask(test_points)
        return np.array([row[mask] for row in test_points])

    def stride_hack(arr):
        from numpy.lib.stride_tricks import as_strided
        return np.array(as_strided(arr, strides=(8 * len(arr[0]), 8)))

    eval_points = inside_domain(eval_points)
    eval_points_dev = cl.array.to_device(queue, eval_points)

    # Evaluate the solution at the evaluation points
    vel = bind((qbx, PointsTarget(eval_points_dev)),
               representation_sym)(queue, sigma=sigma, mu=mu, normal=normal)
    print("@@@@@@@@")
    vel = get_obj_array(vel)

    if soln_type == 'fundamental':
        exact_soln = fund_soln(eval_points_dev[0], eval_points_dev[1], pt_loc)
    else:
        exact_soln = couette_soln(eval_points_dev[0], eval_points_dev[1], dp,
                                  h)
    err = vel - get_obj_array(exact_soln)

    print("@@@@@@@@")

    print(
        "L2 error estimate: ",
        np.sqrt((2. / (nsamp - 1))**2 * np.sum(err[0] * err[0]) +
                (2. / (nsamp - 1))**2 * np.sum(err[1] * err[1])))
    max_error_loc = [abs(err[0]).argmax(), abs(err[1]).argmax()]
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("exact velocity at max error points: x -> ",
          err[0][max_error_loc[0]], ", y -> ", err[1][max_error_loc[1]])

    from pytential.symbolic.mappers import DerivativeTaker
    rep_pressure = stresslet_obj.apply_pressure(inv_sqrt_w_sigma,
                                                nvec_sym,
                                                mu_sym,
                                                qbx_forced_limit=-2)
    pressure = bind((qbx, PointsTarget(eval_points_dev)),
                    rep_pressure)(queue, sigma=sigma, mu=mu, normal=normal)
    pressure = pressure.get()
    print "pressure = ", pressure

    x_dir_vecs = np.zeros((2, len(eval_points[0])))
    x_dir_vecs[0, :] = 1.0
    y_dir_vecs = np.zeros((2, len(eval_points[0])))
    y_dir_vecs[1, :] = 1.0
    x_dir_vecs = cl.array.to_device(queue, x_dir_vecs)
    y_dir_vecs = cl.array.to_device(queue, y_dir_vecs)
    dir_vec_sym = sym.make_sym_vector("force_direction", dim)
    rep_stress = stresslet_obj.apply_stress(inv_sqrt_w_sigma,
                                            nvec_sym,
                                            dir_vec_sym,
                                            mu_sym,
                                            qbx_forced_limit=-2)

    applied_stress_x = bind((qbx, PointsTarget(eval_points_dev)),
                            rep_stress)(queue,
                                        sigma=sigma,
                                        normal=normal,
                                        force_direction=x_dir_vecs,
                                        mu=mu)
    applied_stress_x = get_obj_array(applied_stress_x)
    applied_stress_y = bind((qbx, PointsTarget(eval_points_dev)),
                            rep_stress)(queue,
                                        sigma=sigma,
                                        normal=normal,
                                        force_direction=y_dir_vecs,
                                        mu=mu)
    applied_stress_y = get_obj_array(applied_stress_y)

    print "stress applied to x direction: ", applied_stress_x
    print "stress applied to y direction: ", applied_stress_y

    import matplotlib.pyplot as plt
    plt.quiver(eval_points[0], eval_points[1], vel[0], vel[1], linewidth=0.1)
    file_name = "field-n%s.pdf" % (nelements)
    plt.savefig(file_name)

    return (max(abs(err[0])), max(abs(err[1])))
コード例 #15
0
def timing_run(nx, ny, visualize=False):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    mesh = make_mesh(nx=nx, ny=ny, visualize=visualize)

    density_discr = Discretization(
        actx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    places = {"qbx": qbx}
    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)
        targets = PointsTarget(actx.from_numpy(fplot.points))

        places.update({
            "plot-targets":
            targets,
            "qbx-indicator":
            qbx.copy(target_association_tolerance=0.05,
                     fmm_level_to_order=lambda lev: 7,
                     qbx_order=2),
            "qbx-target-assoc":
            qbx.copy(target_association_tolerance=0.1)
        })

    from pytential import GeometryCollection
    places = GeometryCollection(places, auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = sym.cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    k_sym = sym.var("k")
    S_sym = sym.S(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit=+1)
    D_sym = sym.D(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit="avg")
    bdry_op_sym = -loc_sign * 0.5 * sigma_sym + sqrt_w * (alpha * S_sym +
                                                          D_sym)

    # }}}

    bound_op = bind(places, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3

    from meshmode.dof_array import thaw
    nodes = thaw(actx, density_discr.nodes())
    angle = actx.np.arctan2(nodes[1], nodes[0])

    sigma = actx.np.cos(mode_nr * angle)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=+1)

    sym_op = sym.S(kernel, sym.var("sigma"), **repr_kwargs)
    bound_op = bind(places, sym_op)

    print("FMM WARM-UP RUN 1: %5d elements" % mesh.nelements)
    bound_op(actx, sigma=sigma, k=k)
    queue.finish()

    print("FMM WARM-UP RUN 2: %5d elements" % mesh.nelements)
    bound_op(actx, sigma=sigma, k=k)
    queue.finish()

    from time import time
    t_start = time()
    bound_op(actx, sigma=sigma, k=k)
    actx.queue.finish()
    elapsed = time() - t_start

    print("FMM TIMING RUN:    %5d elements -> %g s" %
          (mesh.nelements, elapsed))

    if visualize:
        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind(places,
                         sym_op,
                         auto_where=("qbx-indicator", "plot-targets"))(
                             queue, sigma=ones_density).get()

        try:
            fld_in_vol = bind(places,
                              sym_op,
                              auto_where=("qbx-target-assoc",
                                          "plot-targets"))(queue,
                                                           sigma=sigma,
                                                           k=k).get()
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file("scaling-study-failed-targets.vts", [
                ("failed", e.failed_target_flags.get(queue)),
            ])
            raise

        fplot.write_vtk_file("scaling-study-potential.vts", [
            ("potential", fld_in_vol),
            ("indicator", indicator),
        ])

    return (mesh.nelements, elapsed)
コード例 #16
0
def main(mesh_name="ellipse", visualize=False):
    import logging
    logging.basicConfig(level=logging.INFO)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    if mesh_name == "ellipse":
        mesh = make_curve_mesh(partial(ellipse, 1),
                               np.linspace(0, 1, nelements + 1), mesh_order)
    elif mesh_name == "ellipse_array":
        base_mesh = make_curve_mesh(partial(ellipse, 1),
                                    np.linspace(0, 1, nelements + 1),
                                    mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        nx = 2
        ny = 2
        dx = 2 / nx
        meshes = [
            affine_map(base_mesh,
                       A=np.diag([dx * 0.25, dx * 0.25]),
                       b=np.array([dx * (ix - nx / 2), dx * (iy - ny / 2)]))
            for ix in range(nx) for iy in range(ny)
        ]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if visualize:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()
    else:
        raise ValueError(f"unknown mesh name: {mesh_name}")

    pre_density_discr = Discretization(
        actx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(pre_density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
    targets = actx.from_numpy(fplot.points)

    from pytential import GeometryCollection
    places = GeometryCollection(
        {
            "qbx":
            qbx,
            "qbx_high_target_assoc_tol":
            qbx.copy(target_association_tolerance=0.05),
            "targets":
            PointsTarget(targets)
        },
        auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    kernel = HelmholtzKernel(2)

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = sym.cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    k_sym = sym.var("k")
    bdry_op_sym = (
        -loc_sign * 0.5 * sigma_sym + sqrt_w *
        (alpha * sym.S(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit=+1)
         - sym.D(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit="avg")))

    # }}}

    bound_op = bind(places, bdry_op_sym)

    # {{{ fix rhs and solve

    from meshmode.dof_array import thaw
    nodes = thaw(actx, density_discr.nodes())
    k_vec = np.array([2, 1])
    k_vec = k * k_vec / la.norm(k_vec, 2)

    def u_incoming_func(x):
        return actx.np.exp(1j * (x[0] * k_vec[0] + x[1] * k_vec[1]))

    bc = -u_incoming_func(nodes)

    bvp_rhs = bind(places, sqrt_w * sym.var("bc"))(actx, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(actx,
                                           sigma_sym.name,
                                           dtype=np.complex128,
                                           k=k),
                         bvp_rhs,
                         tol=1e-8,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(source="qbx_high_target_assoc_tol",
                       target="targets",
                       qbx_forced_limit=None)
    representation_sym = (
        alpha * sym.S(kernel, inv_sqrt_w_sigma, k=k_sym, **repr_kwargs) -
        sym.D(kernel, inv_sqrt_w_sigma, k=k_sym, **repr_kwargs))

    u_incoming = u_incoming_func(targets)
    ones_density = density_discr.zeros(actx)
    for elem in ones_density:
        elem.fill(1)

    indicator = actx.to_numpy(
        bind(places, sym.D(LaplaceKernel(2), sigma_sym,
                           **repr_kwargs))(actx, sigma=ones_density))

    try:
        fld_in_vol = actx.to_numpy(
            bind(places, representation_sym)(actx,
                                             sigma=gmres_result.solution,
                                             k=k))
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file("helmholtz-dirichlet-failed-targets.vts",
                             [("failed", e.failed_target_flags.get(queue))])
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("helmholtz-dirichlet-potential.vts", [
        ("potential", fld_in_vol),
        ("indicator", indicator),
        ("u_incoming", actx.to_numpy(u_incoming)),
    ])
コード例 #17
0
def run_dielectric_test(cl_ctx,
                        queue,
                        nelements,
                        qbx_order,
                        op_class,
                        mode,
                        k0=3,
                        k1=2.9,
                        mesh_order=10,
                        bdry_quad_order=None,
                        bdry_ovsmp_quad_order=None,
                        use_l2_weighting=False,
                        fmm_order=None,
                        visualize=False):

    if fmm_order is None:
        fmm_order = qbx_order * 2
    if bdry_quad_order is None:
        bdry_quad_order = mesh_order
    if bdry_ovsmp_quad_order is None:
        bdry_ovsmp_quad_order = 4 * bdry_quad_order

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(partial(ellipse, 3),
                           np.linspace(0, 1, nelements + 1), mesh_order)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative
    kernel = HelmholtzKernel(2)

    beta = 2.5
    K0 = np.sqrt(k0**2 - beta**2)  # noqa
    K1 = np.sqrt(k1**2 - beta**2)  # noqa

    pde_op = op_class(mode,
                      k_vacuum=1,
                      interfaces=((0, 1, sym.DEFAULT_SOURCE), ),
                      domain_k_exprs=(k0, k1),
                      beta=beta,
                      use_l2_weighting=use_l2_weighting)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order).with_refinement()

    #print(sym.pretty(pde_op.operator(op_unknown_sym)))
    #1/0
    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    e_factor = float(pde_op.ez_enabled)
    h_factor = float(pde_op.hz_enabled)

    e_sources_0 = make_obj_array(list(np.array([[0.1, 0.2]]).T.copy()))
    e_strengths_0 = np.array([1 * e_factor])
    e_sources_1 = make_obj_array(list(np.array([[4, 4]]).T.copy()))
    e_strengths_1 = np.array([1 * e_factor])

    h_sources_0 = make_obj_array(list(np.array([[0.2, 0.1]]).T.copy()))
    h_strengths_0 = np.array([1 * h_factor])
    h_sources_1 = make_obj_array(list(np.array([[4, 5]]).T.copy()))
    h_strengths_1 = np.array([1 * h_factor])

    kernel_grad = [
        AxisTargetDerivative(i, kernel)
        for i in range(density_discr.ambient_dim)
    ]

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)
    pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False)

    normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
    tangent = bind(density_discr,
                   sym.pseudoscalar() / sym.area_element())(queue).as_vector(
                       np.object)

    _, (E0, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        e_sources_0, [e_strengths_0],
                        out_host=False,
                        k=K0)
    _, (E1, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        e_sources_1, [e_strengths_1],
                        out_host=False,
                        k=K1)
    _, (grad0_E0, grad1_E0) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           e_sources_0, [e_strengths_0],
                                           out_host=False,
                                           k=K0)
    _, (grad0_E1, grad1_E1) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           e_sources_1, [e_strengths_1],
                                           out_host=False,
                                           k=K1)

    _, (H0, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        h_sources_0, [h_strengths_0],
                        out_host=False,
                        k=K0)
    _, (H1, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        h_sources_1, [h_strengths_1],
                        out_host=False,
                        k=K1)
    _, (grad0_H0, grad1_H0) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           h_sources_0, [h_strengths_0],
                                           out_host=False,
                                           k=K0)
    _, (grad0_H1, grad1_H1) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           h_sources_1, [h_strengths_1],
                                           out_host=False,
                                           k=K1)

    E0_dntarget = (grad0_E0 * normal[0] + grad1_E0 * normal[1])  # noqa
    E1_dntarget = (grad0_E1 * normal[0] + grad1_E1 * normal[1])  # noqa

    H0_dntarget = (grad0_H0 * normal[0] + grad1_H0 * normal[1])  # noqa
    H1_dntarget = (grad0_H1 * normal[0] + grad1_H1 * normal[1])  # noqa

    E0_dttarget = (grad0_E0 * tangent[0] + grad1_E0 * tangent[1])  # noqa
    E1_dttarget = (grad0_E1 * tangent[0] + grad1_E1 * tangent[1])  # noqa

    H0_dttarget = (grad0_H0 * tangent[0] + grad1_H0 * tangent[1])  # noqa
    H1_dttarget = (grad0_H1 * tangent[0] + grad1_H1 * tangent[1])  # noqa

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            if term.field_kind == pde_op.field_kind_e:

                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0 +
                                      term.coeff_inner * E1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0_dntarget +
                                      term.coeff_inner * E1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0_dttarget +
                                      term.coeff_inner * E1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            elif term.field_kind == pde_op.field_kind_h:
                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0 +
                                      term.coeff_inner * H1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0_dntarget +
                                      term.coeff_inner * H1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0_dttarget +
                                      term.coeff_inner * H1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            if use_l2_weighting:
                bvp_rhs[i_bc] *= sqrt_w

    scipy_op = bound_pde_op.scipy_op(queue,
                                     "unknown",
                                     domains=[sym.DEFAULT_TARGET] *
                                     len(pde_op.bcs),
                                     K0=K0,
                                     K1=K1,
                                     dtype=np.complex128)

    if mode == "tem" or op_class is SRep:
        from sumpy.tools import vector_from_device, vector_to_device
        from pytential.solve import lu
        unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs))
        unknown = vector_to_device(queue, unknown)

    else:
        from pytential.solve import gmres
        gmres_result = gmres(scipy_op,
                             bvp_rhs,
                             tol=1e-14,
                             progress=True,
                             hard_failure=True,
                             stall_iterations=0)

        unknown = gmres_result.solution

    # }}}

    targets_0 = make_obj_array(
        list(np.array([[3.2 + t, -4] for t in [0, 0.5, 1]]).T.copy()))
    targets_1 = make_obj_array(
        list(np.array([[t * -0.3, t * -0.2] for t in [0, 0.5, 1]]).T.copy()))

    from pytential.target import PointsTarget
    from sumpy.tools import vector_from_device
    F0_tgt = vector_from_device(
        queue,
        bind(  # noqa
            (qbx, PointsTarget(targets_0)),
            representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1))
    F1_tgt = vector_from_device(
        queue,
        bind(  # noqa
            (qbx, PointsTarget(targets_1)),
            representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1))

    _, (E0_tgt_true, ) = pot_p2p(queue,
                                 targets_0,
                                 e_sources_0, [e_strengths_0],
                                 out_host=True,
                                 k=K0)
    _, (E1_tgt_true, ) = pot_p2p(queue,
                                 targets_1,
                                 e_sources_1, [e_strengths_1],
                                 out_host=True,
                                 k=K1)

    _, (H0_tgt_true, ) = pot_p2p(queue,
                                 targets_0,
                                 h_sources_0, [h_strengths_0],
                                 out_host=True,
                                 k=K0)
    _, (H1_tgt_true, ) = pot_p2p(queue,
                                 targets_1,
                                 h_sources_1, [h_strengths_1],
                                 out_host=True,
                                 k=K1)

    err_F0_total = 0  # noqa
    err_F1_total = 0  # noqa

    i_field = 0

    def vec_norm(ary):
        return la.norm(ary.reshape(-1))

    def field_kind_to_string(field_kind):
        return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind]

    for field_kind in pde_op.field_kinds:
        if not pde_op.is_field_present(field_kind):
            continue

        if field_kind == pde_op.field_kind_e:
            F0_tgt_true = E0_tgt_true  # noqa
            F1_tgt_true = E1_tgt_true  # noqa
        elif field_kind == pde_op.field_kind_h:
            F0_tgt_true = H0_tgt_true  # noqa
            F1_tgt_true = H1_tgt_true  # noqa
        else:
            assert False

        abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true)  # noqa
        abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true)  # noqa

        rel_err_F0 = abs_err_F0 / vec_norm(F0_tgt_true)  # noqa
        rel_err_F1 = abs_err_F1 / vec_norm(F1_tgt_true)  # noqa

        err_F0_total = max(rel_err_F0, err_F0_total)  # noqa
        err_F1_total = max(rel_err_F1, err_F1_total)  # noqa

        print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0)
        print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1)

        print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0)
        print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1)

        i_field += 1

    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
        from pytential.target import PointsTarget
        fld0 = bind((qbx, PointsTarget(fplot.points)),
                    representation0_sym)(queue, unknown=unknown, K0=K0)
        fld1 = bind((qbx, PointsTarget(fplot.points)),
                    representation1_sym)(queue, unknown=unknown, K1=K1)

        comp_fields = []
        i_field = 0
        for field_kind in pde_op.field_kinds:
            if not pde_op.is_field_present(field_kind):
                continue

            fld_str = field_kind_to_string(field_kind)
            comp_fields.extend([
                ("%s_fld0" % fld_str, fld0[i_field].get()),
                ("%s_fld1" % fld_str, fld1[i_field].get()),
            ])

            i_field += 0

        low_order_qbx = QBXLayerPotentialSource(
            density_discr,
            fine_order=bdry_ovsmp_quad_order,
            qbx_order=2,
            fmm_order=3).with_refinement()
        from sumpy.kernel import LaplaceKernel
        from pytential.target import PointsTarget
        ones = (cl.array.empty(queue, (density_discr.nnodes, ),
                               dtype=np.float64).fill(1))
        ind_func = -bind(
            (low_order_qbx, PointsTarget(fplot.points)),
            sym.D(LaplaceKernel(2), sym.var("u")))(queue, u=ones).get()

        _, (e_fld0_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     e_sources_0, [e_strengths_0],
                                     out_host=True,
                                     k=K0)
        _, (e_fld1_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     e_sources_1, [e_strengths_1],
                                     out_host=True,
                                     k=K1)
        _, (h_fld0_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     h_sources_0, [h_strengths_0],
                                     out_host=True,
                                     k=K0)
        _, (h_fld1_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     h_sources_1, [h_strengths_1],
                                     out_host=True,
                                     k=K1)

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential-n%d.vts" % nelements, [
            ("e_fld0_true", e_fld0_true),
            ("e_fld1_true", e_fld1_true),
            ("h_fld0_true", h_fld0_true),
            ("h_fld1_true", h_fld1_true),
            ("ind", ind_func),
        ] + comp_fields)

    return err_F0_total, err_F1_total
コード例 #18
0
def run_int_eq_test(cl_ctx, queue, case, resolution, visualize):
    mesh = case.get_mesh(resolution, case.target_order)
    print("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(case.target_order))

    source_order = 4*case.target_order

    refiner_extra_kwargs = {}

    qbx_lpot_kwargs = {}
    if case.fmm_backend is None:
        qbx_lpot_kwargs["fmm_order"] = False
    else:
        if hasattr(case, "fmm_tol"):
            from sumpy.expansion.level_to_order import SimpleExpansionOrderFinder
            qbx_lpot_kwargs["fmm_level_to_order"] = SimpleExpansionOrderFinder(
                    case.fmm_tol)

        elif hasattr(case, "fmm_order"):
            qbx_lpot_kwargs["fmm_order"] = case.fmm_order
        else:
            qbx_lpot_kwargs["fmm_order"] = case.qbx_order + 5

    qbx = QBXLayerPotentialSource(
            pre_density_discr,
            fine_order=source_order,
            qbx_order=case.qbx_order,

            _box_extent_norm=getattr(case, "box_extent_norm", None),
            _from_sep_smaller_crit=getattr(case, "from_sep_smaller_crit", None),
            _from_sep_smaller_min_nsources_cumul=30,
            fmm_backend=case.fmm_backend, **qbx_lpot_kwargs)

    if case.use_refinement:
        if case.k != 0 and getattr(case, "refine_on_helmholtz_k", True):
            refiner_extra_kwargs["kernel_length_scale"] = 5/case.k

        if hasattr(case, "scaled_max_curvature_threshold"):
            refiner_extra_kwargs["_scaled_max_curvature_threshold"] = \
                    case.scaled_max_curvature_threshold

        if hasattr(case, "expansion_disturbance_tolerance"):
            refiner_extra_kwargs["_expansion_disturbance_tolerance"] = \
                    case.expansion_disturbance_tolerance

        if hasattr(case, "refinement_maxiter"):
            refiner_extra_kwargs["maxiter"] = case.refinement_maxiter

        #refiner_extra_kwargs["visualize"] = True

        print("%d elements before refinement" % pre_density_discr.mesh.nelements)
        qbx, _ = qbx.with_refinement(**refiner_extra_kwargs)
        print("%d stage-1 elements after refinement"
                % qbx.density_discr.mesh.nelements)
        print("%d stage-2 elements after refinement"
                % qbx.stage2_density_discr.mesh.nelements)
        print("quad stage-2 elements have %d nodes"
                % qbx.quad_stage2_density_discr.groups[0].nunit_nodes)

    density_discr = qbx.density_discr

    if hasattr(case, "visualize_geometry") and case.visualize_geometry:
        bdry_normals = bind(
                density_discr, sym.normal(mesh.ambient_dim)
                )(queue).as_vector(dtype=object)

        bdry_vis = make_visualizer(queue, density_discr, case.target_order)
        bdry_vis.write_vtk_file("geometry.vtu", [
            ("normals", bdry_normals)
            ])

    # {{{ plot geometry

    if 0:
        if mesh.ambient_dim == 2:
            # show geometry, centers, normals
            nodes_h = density_discr.nodes().get(queue=queue)
            pt.plot(nodes_h[0], nodes_h[1], "x-")
            normal = bind(density_discr, sym.normal(2))(queue).as_vector(np.object)
            pt.quiver(nodes_h[0], nodes_h[1],
                    normal[0].get(queue), normal[1].get(queue))
            pt.gca().set_aspect("equal")
            pt.show()

        elif mesh.ambient_dim == 3:
            bdry_vis = make_visualizer(queue, density_discr, case.target_order+3)

            bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                    .as_vector(dtype=object)

            bdry_vis.write_vtk_file("pre-solve-source-%s.vtu" % resolution, [
                ("bdry_normals", bdry_normals),
                ])

        else:
            raise ValueError("invalid mesh dim")

    # }}}

    # {{{ set up operator

    from pytential.symbolic.pde.scalar import (
            DirichletOperator,
            NeumannOperator)

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    if case.k:
        knl = HelmholtzKernel(mesh.ambient_dim)
        knl_kwargs = {"k": sym.var("k")}
        concrete_knl_kwargs = {"k": case.k}
    else:
        knl = LaplaceKernel(mesh.ambient_dim)
        knl_kwargs = {}
        concrete_knl_kwargs = {}

    if knl.is_complex_valued:
        dtype = np.complex128
    else:
        dtype = np.float64

    loc_sign = +1 if case.prob_side in [+1, "scat"] else -1

    if case.bc_type == "dirichlet":
        op = DirichletOperator(knl, loc_sign, use_l2_weighting=True,
                kernel_arguments=knl_kwargs)
    elif case.bc_type == "neumann":
        op = NeumannOperator(knl, loc_sign, use_l2_weighting=True,
                 use_improved_operator=False, kernel_arguments=knl_kwargs)
    else:
        assert False

    op_u = op.operator(sym.var("u"))

    # }}}

    # {{{ set up test data

    if case.prob_side == -1:
        test_src_geo_radius = case.outer_radius
        test_tgt_geo_radius = case.inner_radius
    elif case.prob_side == +1:
        test_src_geo_radius = case.inner_radius
        test_tgt_geo_radius = case.outer_radius
    elif case.prob_side == "scat":
        test_src_geo_radius = case.outer_radius
        test_tgt_geo_radius = case.outer_radius
    else:
        raise ValueError("unknown problem_side")

    point_sources = make_circular_point_group(
            mesh.ambient_dim, 10, test_src_geo_radius,
            func=lambda x: x**1.5)
    test_targets = make_circular_point_group(
            mesh.ambient_dim, 20, test_tgt_geo_radius)

    np.random.seed(22)
    source_charges = np.random.randn(point_sources.shape[1])
    source_charges[-1] = -np.sum(source_charges[:-1])
    source_charges = source_charges.astype(dtype)
    assert np.sum(source_charges) < 1e-15

    source_charges_dev = cl.array.to_device(queue, source_charges)

    # }}}

    # {{{ establish BCs

    from pytential.source import PointPotentialSource
    from pytential.target import PointsTarget

    point_source = PointPotentialSource(cl_ctx, point_sources)

    pot_src = sym.IntG(
        # FIXME: qbx_forced_limit--really?
        knl, sym.var("charges"), qbx_forced_limit=None, **knl_kwargs)

    test_direct = bind((point_source, PointsTarget(test_targets)), pot_src)(
            queue, charges=source_charges_dev, **concrete_knl_kwargs)

    if case.bc_type == "dirichlet":
        bc = bind((point_source, density_discr), pot_src)(
                queue, charges=source_charges_dev, **concrete_knl_kwargs)

    elif case.bc_type == "neumann":
        bc = bind(
                (point_source, density_discr),
                sym.normal_derivative(
                    qbx.ambient_dim, pot_src, where=sym.DEFAULT_TARGET)
                )(queue, charges=source_charges_dev, **concrete_knl_kwargs)

    # }}}

    # {{{ solve

    bound_op = bind(qbx, op_u)

    rhs = bind(density_discr, op.prepare_rhs(sym.var("bc")))(queue, bc=bc)

    try:
        from pytential.solve import gmres
        gmres_result = gmres(
                bound_op.scipy_op(queue, "u", dtype, **concrete_knl_kwargs),
                rhs,
                tol=case.gmres_tol,
                progress=True,
                hard_failure=True,
                stall_iterations=50, no_progress_factor=1.05)
    except QBXTargetAssociationFailedException as e:
        bdry_vis = make_visualizer(queue, density_discr, case.target_order+3)

        bdry_vis.write_vtk_file("failed-targets-%s.vtu" % resolution, [
            ("failed_targets", e.failed_target_flags),
            ])
        raise

    print("gmres state:", gmres_result.state)
    weighted_u = gmres_result.solution

    # }}}

    # {{{ build matrix for spectrum check

    if 0:
        from sumpy.tools import build_matrix
        mat = build_matrix(
                bound_op.scipy_op(
                    queue, arg_name="u", dtype=dtype, k=case.k))
        w, v = la.eig(mat)
        if 0:
            pt.imshow(np.log10(1e-20+np.abs(mat)))
            pt.colorbar()
            pt.show()

        #assert abs(s[-1]) < 1e-13, "h
        #assert abs(s[-2]) > 1e-7
        #from pudb import set_trace; set_trace()

    # }}}

    if case.prob_side != "scat":
        # {{{ error check

        points_target = PointsTarget(test_targets)
        bound_tgt_op = bind((qbx, points_target),
                op.representation(sym.var("u")))

        test_via_bdry = bound_tgt_op(queue, u=weighted_u, k=case.k)

        err = test_via_bdry - test_direct

        err = err.get()
        test_direct = test_direct.get()
        test_via_bdry = test_via_bdry.get()

        # {{{ remove effect of net source charge

        if case.k == 0 and case.bc_type == "neumann" and loc_sign == -1:

            # remove constant offset in interior Laplace Neumann error
            tgt_ones = np.ones_like(test_direct)
            tgt_ones = tgt_ones/la.norm(tgt_ones)
            err = err - np.vdot(tgt_ones, err)*tgt_ones

        # }}}

        rel_err_2 = la.norm(err)/la.norm(test_direct)
        rel_err_inf = la.norm(err, np.inf)/la.norm(test_direct, np.inf)

        # }}}

        print("rel_err_2: %g rel_err_inf: %g" % (rel_err_2, rel_err_inf))

    else:
        rel_err_2 = None
        rel_err_inf = None

    # {{{ test gradient

    if case.check_gradient and case.prob_side != "scat":
        bound_grad_op = bind((qbx, points_target),
                op.representation(
                    sym.var("u"),
                    map_potentials=lambda pot: sym.grad(mesh.ambient_dim, pot),
                    qbx_forced_limit=None))

        #print(bound_t_deriv_op.code)

        grad_from_src = bound_grad_op(
                queue, u=weighted_u, **concrete_knl_kwargs)

        grad_ref = (bind(
                (point_source, points_target),
                sym.grad(mesh.ambient_dim, pot_src)
                )(queue, charges=source_charges_dev, **concrete_knl_kwargs)
                )

        grad_err = (grad_from_src - grad_ref)

        rel_grad_err_inf = (
                la.norm(grad_err[0].get(), np.inf)
                / la.norm(grad_ref[0].get(), np.inf))

        print("rel_grad_err_inf: %g" % rel_grad_err_inf)

    # }}}

    # {{{ test tangential derivative

    if case.check_tangential_deriv and case.prob_side != "scat":
        bound_t_deriv_op = bind(qbx,
                op.representation(
                    sym.var("u"),
                    map_potentials=lambda pot: sym.tangential_derivative(2, pot),
                    qbx_forced_limit=loc_sign))

        #print(bound_t_deriv_op.code)

        tang_deriv_from_src = bound_t_deriv_op(
                queue, u=weighted_u, **concrete_knl_kwargs).as_scalar().get()

        tang_deriv_ref = (bind(
                (point_source, density_discr),
                sym.tangential_derivative(2, pot_src)
                )(queue, charges=source_charges_dev, **concrete_knl_kwargs)
                .as_scalar().get())

        if 0:
            pt.plot(tang_deriv_ref.real)
            pt.plot(tang_deriv_from_src.real)
            pt.show()

        td_err = (tang_deriv_from_src - tang_deriv_ref)

        rel_td_err_inf = la.norm(td_err, np.inf)/la.norm(tang_deriv_ref, np.inf)

        print("rel_td_err_inf: %g" % rel_td_err_inf)

    else:
        rel_td_err_inf = None

    # }}}

    # {{{ any-D file plotting

    if visualize:
        bdry_vis = make_visualizer(queue, density_discr, case.target_order+3)

        bdry_normals = bind(density_discr, sym.normal(qbx.ambient_dim))(queue)\
                .as_vector(dtype=object)

        sym_sqrt_j = sym.sqrt_jac_q_weight(density_discr.ambient_dim)
        u = bind(density_discr, sym.var("u")/sym_sqrt_j)(queue, u=weighted_u)

        bdry_vis.write_vtk_file("source-%s.vtu" % resolution, [
            ("u", u),
            ("bc", bc),
            #("bdry_normals", bdry_normals),
            ])

        from sumpy.visualization import make_field_plotter_from_bbox  # noqa
        from meshmode.mesh.processing import find_bounding_box

        vis_grid_spacing = (0.1, 0.1, 0.1)[:qbx.ambient_dim]
        if hasattr(case, "vis_grid_spacing"):
            vis_grid_spacing = case.vis_grid_spacing
        vis_extend_factor = 0.2
        if hasattr(case, "vis_extend_factor"):
            vis_grid_spacing = case.vis_grid_spacing

        fplot = make_field_plotter_from_bbox(
                find_bounding_box(mesh),
                h=vis_grid_spacing,
                extend_factor=vis_extend_factor)

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.15)
        from pytential.target import PointsTarget

        try:
            solved_pot = bind(
                    (qbx_tgt_tol, PointsTarget(fplot.points)),
                    op.representation(sym.var("u"))
                    )(queue, u=weighted_u, k=case.k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed_targets", e.failed_target_flags.get(queue))
                        ])
            raise

        from sumpy.kernel import LaplaceKernel
        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind(
                (qbx_tgt_tol, PointsTarget(fplot.points)),
                -sym.D(LaplaceKernel(density_discr.ambient_dim),
                    sym.var("sigma"),
                    qbx_forced_limit=None))(
                queue, sigma=ones_density).get()

        solved_pot = solved_pot.get()

        true_pot = bind((point_source, PointsTarget(fplot.points)), pot_src)(
                queue, charges=source_charges_dev, **concrete_knl_kwargs).get()

        #fplot.show_scalar_in_mayavi(solved_pot.real, max_val=5)
        if case.prob_side == "scat":
            fplot.write_vtk_file(
                    "potential-%s.vts" % resolution,
                    [
                        ("pot_scattered", solved_pot),
                        ("pot_incoming", -true_pot),
                        ("indicator", indicator),
                        ]
                    )
        else:
            fplot.write_vtk_file(
                    "potential-%s.vts" % resolution,
                    [
                        ("solved_pot", solved_pot),
                        ("true_pot", true_pot),
                        ("indicator", indicator),
                        ]
                    )

    # }}}

    class Result(Record):
        pass

    return Result(
            h_max=qbx.h_max,
            rel_err_2=rel_err_2,
            rel_err_inf=rel_err_inf,
            rel_td_err_inf=rel_td_err_inf,
            gmres_result=gmres_result)
コード例 #19
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    if 0:
        mesh = make_curve_mesh(partial(ellipse, 1),
                               np.linspace(0, 1, nelements + 1), mesh_order)
    else:
        base_mesh = make_curve_mesh(partial(ellipse, 1),
                                    np.linspace(0, 1, nelements + 1),
                                    mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        nx = 2
        ny = 2
        dx = 2 / nx
        meshes = [
            affine_map(base_mesh,
                       A=np.diag([dx * 0.25, dx * 0.25]),
                       b=np.array([dx * (ix - nx / 2), dx * (iy - ny / 2)]))
            for ix in range(nx) for iy in range(ny)
        ]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if 0:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()

    pre_density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx, _ = QBXLayerPotentialSource(pre_density_discr,
                                     fine_order=bdry_ovsmp_quad_order,
                                     qbx_order=qbx_order,
                                     fmm_order=fmm_order).with_refinement()
    density_discr = qbx.density_discr

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign * 0.5 * sigma_sym + sqrt_w * (alpha * sym.S(
        kernel, inv_sqrt_w_sigma, k=sym.var("k"), qbx_forced_limit=+1) - sym.D(
            kernel, inv_sqrt_w_sigma, k=sym.var("k"), qbx_forced_limit="avg")))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    nodes = density_discr.nodes().with_queue(queue)
    k_vec = np.array([2, 1])
    k_vec = k * k_vec / la.norm(k_vec, 2)

    def u_incoming_func(x):
        return cl.clmath.exp(1j * (x[0] * k_vec[0] + x[1] * k_vec[1]))

    bc = -u_incoming_func(nodes)

    bvp_rhs = bind(qbx, sqrt_w * sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           dtype=np.complex128,
                                           k=k),
                         bvp_rhs,
                         tol=1e-8,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=None)
    representation_sym = (
        alpha * sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs) -
        sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)

    targets = cl.array.to_device(queue, fplot.points)

    u_incoming = u_incoming_func(targets)

    qbx_stick_out = qbx.copy(target_association_tolerance=0.05)

    ones_density = density_discr.zeros(queue)
    ones_density.fill(1)
    indicator = bind((qbx_stick_out, PointsTarget(targets)),
                     sym.D(LaplaceKernel(2),
                           sym.var("sigma"),
                           qbx_forced_limit=None))(queue,
                                                   sigma=ones_density).get()

    try:
        fld_in_vol = bind((qbx_stick_out, PointsTarget(targets)),
                          representation_sym)(queue, sigma=sigma, k=k).get()
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file("failed-targets.vts",
                             [("failed", e.failed_target_flags.get(queue))])
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("potential-helm.vts", [
        ("potential", fld_in_vol),
        ("indicator", indicator),
        ("u_incoming", u_incoming.get()),
    ])