コード例 #1
0
def validate(params,
             timespan=('2009-01', '2009-12'), gpi=None, rescaling=None,
             y_axis_range=None):
    """
    This function is optimising the parameters vegetation water content
    'm_veg', soil moisture 'm_soil' and, if specified, a third optional
    parameter. The third optional parameter can eitehr be sand 'sand',
    clay 'clay', fractional root mean square height 'f_rms',
    stem volume 's_vol' or temperature 'temp'.

    Parameters
    ----------
    params : list of dicts
        Model parameters. At least
        four of the following parameters needs to be specified if an optional
        parameter has been selected, otherwise all of them needs to be
        specified: 'sand', 'clay', 'f_rms', 'temp', 's_vol'
    timespan : tuple, optional
        timespan to analyze
    gpi : int, optional
        Grid point index. If specified, it will read data from datapool.
    rescaling : string, optional
        rescaling method, one of 'min_max', 'linreg', 'mean_std' and 'lin_cdf_match'
        Default: None
        insitu is the reference to which is scaled
    y_axis_range : tuple, optional
        specify (min, max) of y axis


    Returns
    -------
    df : pandas.DataFrame
        Optimised soil moisture, vegetation water concent and, if specified,
        optional optimised parameter.
    """

    unit_dict = {'freq': 'GHz',
                 'sand': '',
                 'clay': '',
                 'temp': '$^\circ$C',
                 'eps': '',
                 'theta': '$^\circ$',
                 'f_rms': '',
                 'sig_bare': 'dB',
                 'm_soil': '%',
                 'm_veg': '%',
                 'm_soil_x0': '%',
                 'm_veg_x0': '%',
                 's_vol': '$m^3ha^{-1}$',
                 'sig_canopy': 'dB',
                 'sig_for': 'dB',
                 'sig_floor': 'dB',
                 'polarization': ''}

    param_should = ['sand', 'clay', 'temp',
                    's_vol', 'f_rms',
                    'm_veg_x0', 'm_soil_x0']

    for param in param_should:
        assert param in params.keys()

    if gpi is None:
        ts_resam = pd.read_csv(os.path.join(os.path.split(os.path.abspath(__file__))[0],'data','2011528_2009.csv'), index_col=0,
                               parse_dates=True)[timespan[0]:timespan[1]]
        gpi = 2011528
    else:
        ts_resam = read_resam(gpi)[timespan[0]:timespan[1]]

    m_veg_x0 = params.pop('m_veg_x0')
    m_soil_x0 = params.pop('m_soil_x0')
    columns = ['m_veg', 'm_soil']

    x0 = np.array([m_veg_x0, m_soil_x0])

    df = pd.DataFrame(index=ts_resam.index, columns=columns)
    df = df.fillna(np.nan)
    # optimise  m_soil and m_veg
    for index, row in ts_resam.iterrows():

        ascat_inc = np.array(row[['incf', 'incm', 'inca']].tolist())
        ascat_sig = \
            db2lin(np.array(row[['sigf', 'sigm', 'siga']].tolist()))

        args = (ascat_inc, ascat_sig, params, '')
        res = minimize(sig_sqr_diff, x0, args=args, method='Nelder-Mead')

        if res['success'] == True:
            df['m_veg'][index] = res['x'][0]
            df['m_soil'][index] = res['x'][1]

    str_static_p = \
                ', '.join("%s: %r" % t for t in locals().iteritems())

    str_static_p += ",\nm_veg_x0 = {:.2f}, m_soil_x0 = {:.2f}".format(m_veg_x0, m_soil_x0)

	
    ismn_file = os.path.join(os.path.split(os.path.abspath(__file__))[0],'data','ARM_ARM_Larned_sm_0.050000_0.050000_Water-Matric-Potential-Sensor-229L-W_20090101_20140527.stm')
    ismn_data = ismn_readers.read_data(ismn_file)
    insitu = pd.DataFrame(ismn_data.data['soil moisture']).rename(columns={'soil moisture': 'insitu'})
    gldas = pd.read_csv(os.path.join(os.path.split(os.path.abspath(__file__))[0],'data', 'GLDAS_737602.csv'), parse_dates=True, index_col=0)
    gldas.rename(columns={'086_L1': 'gldas'}, inplace=True)
    gldas = pd.DataFrame(gldas['gldas']) / 100.0
    ascat = pd.DataFrame(df['m_soil']).rename(columns={'m_soil': 'ascat'})

    matched = temp_match.matching(ascat, insitu, gldas)

    if rescaling is not None:
        scaled = scaling.scale(matched, rescaling, reference_index=1)
    else:
        scaled = matched

    metrics = OrderedDict()
    metrics['bias'] = df_metrics.bias(scaled)
    metrics['pearson'] = df_metrics.pearsonr(scaled)
    metrics['spearman'] = df_metrics.spearmanr(scaled)
    metrics['ubrmsd'] = df_metrics.rmsd(scaled)
    metrics['std_ratio'] = df_std_ratio(scaled)
    tcol_error = df_metrics.tcol_error(scaled)._asdict()

    ts_title = "Soil moisture. "
    if rescaling is not None:
        ts_title = ' '.join([ts_title, 'Rescaling: %s.' % rescaling])
        rmsd_title = 'unbiased RMSD'
    else:
        ts_title = ' '.join([ts_title, 'No rescaling.'])
        rmsd_title = 'RMSD'


    axes = scaled.plot(title=ts_title, figsize=(18, 8))
    plt.legend()

    # these are matplotlib.patch.Patch properties
    props = dict(facecolor='white', alpha=0)

    columns = ('ascat-insitu', 'ascat-gldas', 'insitu-gldas')
    row_labels = ['bias', 'pearson R', 'spearman rho', rmsd_title, 'stddev ratio']
    cell_text = []
    for metric in metrics:
        metric_values = metrics[metric]
        if type(metric_values) == tuple:
            metric_values = metric_values[0]
        metric_values = metric_values._asdict()
        cell_text.append(["%.2f" % metric_values['ascat_and_insitu'],
                              "%.2f" % metric_values['ascat_and_gldas'],
                              "%.2f" % metric_values['insitu_and_gldas']])


    table = plt.table(
              cellText=cell_text,
              colLabels=columns,
              colWidths=[0.1, 0.1, 0.1],
              rowLabels=row_labels, loc='bottom',
              bbox=(0.2, -0.5, 0.5, 0.3))

    tcol_table = plt.table(
              cellText=[["%.2f" % tcol_error['ascat'],
                         "%.2f" % tcol_error['gldas'],
                         "%.2f" % tcol_error['insitu']]],
              colLabels=('ascat      ', 'gldas      ', 'insitu      '),
              colWidths=[0.1, 0.1, 0.1],
              rowLabels=['Triple collocation error'], loc='bottom',
              bbox=(0.2, -0.6, 0.5, 0.1))

    plt.subplots_adjust(left=0.08, bottom=0.35, right=0.85)
    plt.draw()
#
    if y_axis_range is not None:
        axes.set_ylim(y_axis_range)

    params['m_veg_x0'] = m_veg_x0
    params['m_soil_x0'] = m_soil_x0

    infotext = []
    for label in sorted(param_should):
        infotext.append('%s = %s %s' % (label, params[label], unit_dict[label]))

    infotext = '\n'.join(infotext)

    # place a text box in upper left in axes coords
    axes.text(1.03, 1, infotext, transform=axes.transAxes, fontsize=12,
            verticalalignment='top', bbox=props)

    axes = scatter_matrix(scaled)
    axes.flat[0].figure.suptitle(ts_title)

    # only draw 1:1 line if scaling was applied
    for j, ax in enumerate(axes.flatten()):
        if y_axis_range is not None:
            ax.set_xlim(y_axis_range)

        if np.remainder(j + 1, 3 + 1) != 1:
            if y_axis_range is not None:
                ax.set_ylim(y_axis_range)
            min_x, max_x = ax.get_xlim()
            min_y, max_y = ax.get_ylim()
            # find minimum lower left coordinate and maximum upper right
            min_ll = min([min_x, min_y])
            max_ur = max([max_x, max_y])
            ax.plot([min_ll, max_ur], [min_ll, max_ur], '--', c='0.6')
コード例 #2
0
def optimise(params,
             timespan=('2009-01', '2009-12'),
             gpi=None,
             rescaling=None):
    """
    This function is optimising the parameters vegetation water content
    'm_veg', soil moisture 'm_soil' and, if specified, a third optional
    parameter. The third optional parameter can eitehr be sand 'sand',
    clay 'clay', fractional root mean square height 'f_rms',
    stem volume 's_vol' or temperature 'temp'.

    Parameters
    ----------
    params : list of dicts
        Model parameters. At least
        four of the following parameters needs to be specified if an optional
        parameter has been selected, otherwise all of them needs to be
        specified: 'sand', 'clay', 'f_rms', 'temp', 's_vol'
    gpi : int, optional
        Grid point index. If specified, it will read data from datapool.

    Returns
    -------
    df : pandas.DataFrame
        Optimised soil moisture, vegetation water concent and, if specified,
        optional optimised parameter.
    """

    if gpi is None:
        ts_resam = pd.read_csv(os.path.join("data", "2011528_2009.csv"),
                               index_col=0,
                               parse_dates=True)[timespan[0]:timespan[1]]
        gpi = 2011528
    else:
        ts_resam = read_resam(gpi)[timespan[0]:timespan[1]]

    m_veg_x0 = params.pop('m_veg_x0')
    m_soil_x0 = params.pop('m_soil_x0')
    columns = ['m_veg', 'm_soil']

    x0 = np.array([m_veg_x0, m_soil_x0])

    df = pd.DataFrame(index=ts_resam.index, columns=columns)
    df = df.fillna(np.nan)
    # optimise  m_soil and m_veg
    for index, row in ts_resam.iterrows():

        ascat_inc = np.array(row[['incf', 'incm', 'inca']].tolist())
        ascat_sig = \
            db2lin(np.array(row[['sigf', 'sigm', 'siga']].tolist()))

        args = (ascat_inc, ascat_sig, params, '')
        res = minimize(sig_sqr_diff, x0, args=args, method='Nelder-Mead')

        if res['success'] == True:
            df['m_veg'][index] = res['x'][0]
            df['m_soil'][index] = res['x'][1]

    str_static_p = \
                ', '.join("%s: %r" % t for t in locals().iteritems())

    str_static_p += ",\nm_veg_x0 = {:.2f}, m_soil_x0 = {:.2f}".format(
        m_veg_x0, m_soil_x0)

    ismn_file = os.path.join(
        'data',
        'ARM_ARM_Larned_sm_0.050000_0.050000_Water-Matric-Potential-Sensor-229L-W_20090101_20140527.stm'
    )
    ismn_data = ismn_readers.read_data(ismn_file)
    insitu = pd.DataFrame(ismn_data.data['soil moisture']).rename(
        columns={'soil moisture': 'insitu'})
    gldas = pd.read_csv(os.path.join('data', 'GLDAS_737602.csv'),
                        parse_dates=True,
                        index_col=0)
    gldas.rename(columns={'086_L1': 'gldas'}, inplace=True)
    gldas = pd.DataFrame(gldas['gldas'])
    ascat = pd.DataFrame(df['m_soil']).rename(columns={'m_soil': 'ascat'})

    matched = temp_match.matching(ascat, insitu, gldas)

    if rescaling is not None:
        scaled = scaling.scale(matched, rescaling, reference_index=1)
    else:
        scaled = matched

    metrics = OrderedDict()
    metrics['bias'] = df_metrics.bias(scaled)
    metrics['pearson'] = df_metrics.pearsonr(scaled)
    metrics['kendall'] = df_metrics.kendalltau(scaled)
    metrics['ubrmsd'] = df_metrics.ubrmsd(scaled)
    metrics['var_ratio'] = df_var_ratio(scaled)
    tcol_error = df_metrics.tcol_error(scaled)._asdict()

    ts_title = "Soil moisture. "
    if rescaling is not None:
        ts_title = ' '.join([ts_title, 'Rescaling: %s.' % rescaling])
    else:
        ts_title = ' '.join([ts_title, 'No rescaling.'])

    axes = scaled.plot(subplots=True, title=ts_title, figsize=(18, 8))

    # these are matplotlib.patch.Patch properties
    props = dict(facecolor='white', alpha=0)

    columns = ('ascat-insitu', 'ascat-gldas', 'insitu-gldas')
    row_labels = [
        'bias', 'pearson R', 'kendall tau', 'unbiased RMSD', 'variance ratio'
    ]
    cell_text = []
    for metric in metrics:
        metric_values = metrics[metric]
        if type(metric_values) == tuple:
            metric_values = metric_values[0]
        metric_values = metric_values._asdict()
        cell_text.append([
            "%.2f" % metric_values['ascat_and_insitu'],
            "%.2f" % metric_values['ascat_and_gldas'],
            "%.2f" % metric_values['insitu_and_gldas']
        ])

    table = plt.table(cellText=cell_text,
                      colLabels=columns,
                      colWidths=[0.1, 0.1, 0.1],
                      rowLabels=row_labels,
                      loc='bottom',
                      bbox=(0.2, -1.25, 0.5, 0.8))

    tcol_table = plt.table(cellText=[[
        "%.2f" % tcol_error['ascat'],
        "%.2f" % tcol_error['gldas'],
        "%.2f" % tcol_error['insitu']
    ]],
                           colLabels=('ascat', 'gldas', 'insitu'),
                           colWidths=[0.1, 0.1, 0.1],
                           rowLabels=['Triple collocation error'],
                           loc='bottom',
                           bbox=(0.2, -1.65, 0.5, 0.3))

    plt.subplots_adjust(left=0.08, bottom=0.35)

    axes = scatter_matrix(scaled)
    axes.flat[0].figure.suptitle(ts_title)

    # only draw 1:1 line if scaling was applied
    if rescaling is not None:
        for j, ax in enumerate(axes.flatten()):

            if np.remainder(j + 1, 3 + 1) != 1:
                min_x, max_x = ax.get_xlim()
                min_y, max_y = ax.get_ylim()
                # find minimum lower left coordinate and maximum upper right
                min_ll = min([min_x, min_y])
                max_ur = max([max_x, max_y])
                ax.plot([min_ll, max_ur], [min_ll, max_ur], '--', c='0.6')

    return df
コード例 #3
0
def optimise(params,
             timespan=('2009-01', '2009-12'), gpi=None, rescaling=None):
    """
    This function is optimising the parameters vegetation water content
    'm_veg', soil moisture 'm_soil' and, if specified, a third optional
    parameter. The third optional parameter can eitehr be sand 'sand',
    clay 'clay', fractional root mean square height 'f_rms',
    stem volume 's_vol' or temperature 'temp'.

    Parameters
    ----------
    params : list of dicts
        Model parameters. At least
        four of the following parameters needs to be specified if an optional
        parameter has been selected, otherwise all of them needs to be
        specified: 'sand', 'clay', 'f_rms', 'temp', 's_vol'
    gpi : int, optional
        Grid point index. If specified, it will read data from datapool.

    Returns
    -------
    df : pandas.DataFrame
        Optimised soil moisture, vegetation water concent and, if specified,
        optional optimised parameter.
    """

    if gpi is None:
        ts_resam = pd.read_csv(os.path.join("data", "2011528_2009.csv"), index_col=0,
                               parse_dates=True)[timespan[0]:timespan[1]]
        gpi = 2011528
    else:
        ts_resam = read_resam(gpi)[timespan[0]:timespan[1]]

    m_veg_x0 = params.pop('m_veg_x0')
    m_soil_x0 = params.pop('m_soil_x0')
    columns = ['m_veg', 'm_soil']

    x0 = np.array([m_veg_x0, m_soil_x0])

    df = pd.DataFrame(index=ts_resam.index, columns=columns)
    df = df.fillna(np.nan)
    # optimise  m_soil and m_veg
    for index, row in ts_resam.iterrows():

        ascat_inc = np.array(row[['incf', 'incm', 'inca']].tolist())
        ascat_sig = \
            db2lin(np.array(row[['sigf', 'sigm', 'siga']].tolist()))

        args = (ascat_inc, ascat_sig, params, '')
        res = minimize(sig_sqr_diff, x0, args=args, method='Nelder-Mead')

        if res['success'] == True:
            df['m_veg'][index] = res['x'][0]
            df['m_soil'][index] = res['x'][1]

    str_static_p = \
                ', '.join("%s: %r" % t for t in locals().iteritems())

    str_static_p += ",\nm_veg_x0 = {:.2f}, m_soil_x0 = {:.2f}".format(m_veg_x0, m_soil_x0)

    ismn_file = os.path.join('data', 'ARM_ARM_Larned_sm_0.050000_0.050000_Water-Matric-Potential-Sensor-229L-W_20090101_20140527.stm')
    ismn_data = ismn_readers.read_data(ismn_file)
    insitu = pd.DataFrame(ismn_data.data['soil moisture']).rename(columns={'soil moisture': 'insitu'})
    gldas = pd.read_csv(os.path.join('data', 'GLDAS_737602.csv'), parse_dates=True, index_col=0)
    gldas.rename(columns={'086_L1': 'gldas'}, inplace=True)
    gldas = pd.DataFrame(gldas['gldas'])
    ascat = pd.DataFrame(df['m_soil']).rename(columns={'m_soil': 'ascat'})

    matched = temp_match.matching(ascat, insitu, gldas)

    if rescaling is not None:
        scaled = scaling.scale(matched, rescaling, reference_index=1)
    else:
        scaled = matched

    metrics = OrderedDict()
    metrics['bias'] = df_metrics.bias(scaled)
    metrics['pearson'] = df_metrics.pearsonr(scaled)
    metrics['kendall'] = df_metrics.kendalltau(scaled)
    metrics['ubrmsd'] = df_metrics.ubrmsd(scaled)
    metrics['var_ratio'] = df_var_ratio(scaled)
    tcol_error = df_metrics.tcol_error(scaled)._asdict()

    ts_title = "Soil moisture. "
    if rescaling is not None:
        ts_title = ' '.join([ts_title, 'Rescaling: %s.' % rescaling])
    else:
        ts_title = ' '.join([ts_title, 'No rescaling.'])

    axes = scaled.plot(subplots=True, title=ts_title, figsize=(18, 8))

    # these are matplotlib.patch.Patch properties
    props = dict(facecolor='white', alpha=0)

    columns = ('ascat-insitu', 'ascat-gldas', 'insitu-gldas')
    row_labels = ['bias', 'pearson R', 'kendall tau', 'unbiased RMSD', 'variance ratio']
    cell_text = []
    for metric in metrics:
        metric_values = metrics[metric]
        if type(metric_values) == tuple:
            metric_values = metric_values[0]
        metric_values = metric_values._asdict()
        cell_text.append(["%.2f" % metric_values['ascat_and_insitu'],
                              "%.2f" % metric_values['ascat_and_gldas'],
                              "%.2f" % metric_values['insitu_and_gldas']])

    table = plt.table(
              cellText=cell_text,
              colLabels=columns,
              colWidths=[0.1, 0.1, 0.1],
              rowLabels=row_labels, loc='bottom',
              bbox=(0.2, -1.25, 0.5, 0.8))

    tcol_table = plt.table(
              cellText=[["%.2f" % tcol_error['ascat'],
                         "%.2f" % tcol_error['gldas'],
                         "%.2f" % tcol_error['insitu']]],
              colLabels=('ascat', 'gldas', 'insitu'),
              colWidths=[0.1, 0.1, 0.1],
              rowLabels=['Triple collocation error'], loc='bottom',
              bbox=(0.2, -1.65, 0.5, 0.3))

    plt.subplots_adjust(left=0.08, bottom=0.35)

    axes = scatter_matrix(scaled)
    axes.flat[0].figure.suptitle(ts_title)

    # only draw 1:1 line if scaling was applied
    if rescaling is not None:
        for j, ax in enumerate(axes.flatten()):

            if np.remainder(j + 1, 3 + 1) != 1:
                min_x, max_x = ax.get_xlim()
                min_y, max_y = ax.get_ylim()
                # find minimum lower left coordinate and maximum upper right
                min_ll = min([min_x, min_y])
                max_ur = max([max_x, max_y])
                ax.plot([min_ll, max_ur], [min_ll, max_ur], '--', c='0.6')

    return df