コード例 #1
0
    def test_seq_tensor(self):
        tensorizer = SeqTokenTensorizer()

        data = TSVDataSource(
            train_file=SafeFileWrapper(
                tests_module.test_file("train_seq_features.tsv")
            ),
            test_file=None,
            eval_file=None,
            field_names=["text_seq"],
            schema={"text_seq": List[str]},
        )

        init = tensorizer.initialize()
        init.send(None)  # kick
        for row in data.train:
            init.send(row)
        init.close()
        # UNK + PAD + 6 tokens
        self.assertEqual(8, len(tensorizer.vocab))

        # only one row in test file:
        # ["where do you wanna meet?", "MPK"]
        for row in data.train:
            idx, lens = tensorizer.numberize(row)
            self.assertEqual(2, lens)
            self.assertEqual([[2, 3, 4, 5, 6], [7, 1, 1, 1, 1]], idx)
コード例 #2
0
    def test_seq_tensor(self):
        tensorizer = SeqTokenTensorizer()

        data = TSVDataSource(
            train_file=SafeFileWrapper(
                tests_module.test_file("train_seq_features.tsv")
            ),
            test_file=None,
            eval_file=None,
            field_names=["text_seq"],
            schema={"text_seq": List[str]},
        )

        self._initialize_tensorizer(tensorizer, data)
        # UNK + PAD + 6 tokens
        self.assertEqual(8, len(tensorizer.vocab))

        # only one row in test file:
        # ["where do you wanna meet?", "MPK"]
        for row in data.train:
            tokens, token_lens, seq_lens = tensorizer.prepare_input(row)
            idx, sentence_lens, lens = tensorizer.numberize(row)
            self.assertEqual(2, lens)
            self.assertEqual([[2, 3, 4, 5, 6], [7, 1, 1, 1, 1]], idx)
            self.assertEqual([5, 1], sentence_lens)
            self.assertEqual(2, seq_lens)
            self.assertEqual(
                [
                    ["where", "do", "you", "wanna", "meet?"],
                    ["mpk", "__PAD__", "__PAD__", "__PAD__", "__PAD__"],
                ],
                tokens,
            )
コード例 #3
0
ファイル: tensorizers_test.py プロジェクト: twild-fb/pytext
    def test_seq_tensor_with_bos_eos_eol_bol(self):
        tensorizer = SeqTokenTensorizer(
            add_bos_token=True,
            add_eos_token=True,
            add_bol_token=True,
            add_eol_token=True,
        )

        data = TSVDataSource(
            train_file=SafeFileWrapper(
                tests_module.test_file("train_seq_features.tsv")),
            test_file=None,
            eval_file=None,
            field_names=["text_seq"],
            schema={"text_seq": List[str]},
        )

        self._initialize_tensorizer(tensorizer, data)
        # UNK + PAD + BOS + EOS + BOL + EOL + 6 tokens
        self.assertEqual(12, len(tensorizer.vocab))

        # only one row in test file:
        # ["where do you wanna meet?", "MPK"]
        for row in data.train:
            idx, lens = tensorizer.numberize(row)
            self.assertEqual(4, lens)
            self.assertEqual(
                [
                    [2, 4, 3, 1, 1, 1, 1],
                    [2, 6, 7, 8, 9, 10, 3],
                    [2, 11, 3, 1, 1, 1, 1],
                    [2, 5, 3, 1, 1, 1, 1],
                ],
                idx,
            )
コード例 #4
0
ファイル: tensorizers_test.py プロジェクト: meltnur/pytext
    def test_seq_tensor_pad_batch(self):
        tensorizer = SeqTokenTensorizer()

        data = TSVDataSource(
            train_file=SafeFileWrapper(
                tests_module.test_file("train_seq_features.tsv")),
            test_file=None,
            eval_file=None,
            field_names=["text_seq"],
            schema={"text_seq": List[str]},
        )

        self._initialize_tensorizer(tensorizer, data)
        token_idx_1 = [[2, 3], [2, 1]]
        token_count_1 = [2, 1]
        seq_len_1 = 2
        token_idx_2 = [[2, 3, 4]]
        token_count_2 = [3]
        seq_len_2 = 1
        token_idx_tensor, token_count_tensor, seq_len_tensor = tensorizer.tensorize(
            [
                (token_idx_1, token_count_1, seq_len_1),
                (token_idx_2, token_count_2, seq_len_2),
            ])
        np.testing.assert_array_almost_equal(
            np.array([[[2, 3, 1], [2, 1, 1]], [[2, 3, 4], [1, 1, 1]]]),
            token_idx_tensor.detach().numpy(),
        )
        np.testing.assert_array_almost_equal(
            np.array([[2, 1], [3, 1]]),
            token_count_tensor.detach().numpy())
        np.testing.assert_array_almost_equal(np.array([2, 1]),
                                             seq_len_tensor.detach().numpy())
コード例 #5
0
ファイル: tensorizers_test.py プロジェクト: meltnur/pytext
    def test_seq_tensor_max_turn(self):
        tensorizer = SeqTokenTensorizer(max_turn=1)

        data = TSVDataSource(
            train_file=SafeFileWrapper(
                tests_module.test_file("train_seq_features.tsv")),
            test_file=None,
            eval_file=None,
            field_names=["text_seq"],
            schema={"text_seq": List[str]},
        )

        self._initialize_tensorizer(tensorizer, data)

        # only one row in test file:
        # ["where do you wanna meet?", "MPK"]
        for row in data.train:
            idx, sentence_lens, seq_len = tensorizer.numberize(row)
            self.assertEqual(1, seq_len)
            self.assertEqual([[2, 3, 4, 5, 6]], idx)
            self.assertEqual([5], sentence_lens)
コード例 #6
0
 class ModelInput(DocModel.Config.ModelInput):
     tokens: SeqTokenTensorizer.Config = SeqTokenTensorizer.Config(
         column="text_seq")
コード例 #7
0
        class ModelInput(IntentSlotModel.Config.ModelInput):

            seq_tokens: Optional[
                SeqTokenTensorizer.Config] = SeqTokenTensorizer.Config()