def test_matmul_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = ad.matmul_op(x2, x3) grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = np.array([[1, 2], [3, 4], [5, 6]]) # 3x2 x3_val = np.array([[7, 8, 9], [10, 11, 12]]) # 2x3 y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={ x2: x2_val, x3: x3_val }) expected_yval = np.matmul(x2_val, x3_val) expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(x3_val)) expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval)) assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val)
def test_grad_of_grad(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 * x2 + x2 * x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) grad_x2_x2, grad_x2_x3 = ad.gradients(grad_x2, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3, grad_x2_x2, grad_x2_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val, grad_x2_x2_val, grad_x2_x3_val = executor.run( feed_dict={ x2: x2_val, x3: x3_val }) expected_yval = x2_val * x2_val + x2_val * x3_val expected_grad_x2_val = 2 * x2_val + x3_val expected_grad_x3_val = x2_val expected_grad_x2_x2_val = 2 * np.ones_like(x2_val) expected_grad_x2_x3_val = 1 * np.ones_like(x2_val) assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val) assert np.array_equal(grad_x2_x2_val, expected_grad_x2_x2_val) assert np.array_equal(grad_x2_x3_val, expected_grad_x2_x3_val)
def test_add_mul_mix_3(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") z = x2 * x2 + x2 + x3 + 3 y = z * z + x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={ x2: x2_val, x3: x3_val }) z_val = x2_val * x2_val + x2_val + x3_val + 3 expected_yval = z_val * z_val + x3_val expected_grad_x2_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) * (2 * x2_val + 1) expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1 assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val)
def test_add_mul_mix_2(): x1 = ad.Variable(name="x1") x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") x4 = ad.Variable(name="x4") y = x1 + x2 * x3 * x4 grad_x1, grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x1, x2, x3, x4]) executor = ad.Executor([y, grad_x1, grad_x2, grad_x3, grad_x4]) x1_val = 1 * np.ones(3) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) x4_val = 4 * np.ones(3) y_val, grad_x1_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run( feed_dict={ x1: x1_val, x2: x2_val, x3: x3_val, x4: x4_val }) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x1_val + x2_val * x3_val * x4_val) assert np.array_equal(grad_x1_val, np.ones_like(x1_val)) assert np.array_equal(grad_x2_val, x3_val * x4_val) assert np.array_equal(grad_x3_val, x2_val * x4_val) assert np.array_equal(grad_x4_val, x2_val * x3_val)
def test_mul_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 * x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={ x2: x2_val, x3: x3_val }) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val * x3_val) assert np.array_equal(grad_x2_val, x3_val) assert np.array_equal(grad_x3_val, x2_val)
def test_exp_grad(): x = ad.Variable("x") y = ad.exp_op(x) x_grad, = ad.gradients(y, [x]) executor = ad.Executor([y, x_grad]) x_val = 1 y_val, x_grad_val = executor.run(feed_dict={x: x_val}) print(y_val) print(x_grad_val)
def test_lr(): W = ad.Variable(name="W") b = ad.Variable(name="b") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") # ini x_val = np.linspace(0, 1, 100).reshape((100, 1)) y_val = x_val + 0.5 W_val = np.array([[0.1]]) b_val = np.array([[0.1]]) z = ad.matmul_op(X, W) # z.shape = (100,1) # b.shape = (1,1) y = z + ad.broadcastto_op(b, z) # y = (100,1) loss = ad.matmul_op(y + (-1) * y_, y + (-1) * y_, trans_A=True) * (1 / 100) # loss = ad.softmaxcrossentropy_op(y, y_) grad_W, grad_b = ad.gradients(loss, [W, b]) executor = ad.Executor([loss, grad_W, grad_b]) aph = 1e-3 for i in range(100000): loss_val, grad_W_val, grad_b_val = executor.run(feed_dict={ X: x_val, b: b_val, W: W_val, y_: y_val }) W_val = W_val - aph * grad_W_val b_val = b_val - aph * grad_b_val print(W_val, b_val) executor = ad.Executor([y]) res = executor.run(feed_dict={X: x_val, b: b_val, W: W_val}) print('y_true' + str(y_val)) print('y_pred' + str(res))
def test_identity(): x2 = ad.Variable(name="x2") y = x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val) assert np.array_equal(grad_x2_val, np.ones_like(x2_val))
def test_exp(): x1 = ad.Variable("x1") x2 = ad.exp_op(x1) x3 = x2 + 1 x4 = x2 * x3 x1_grad, = ad.gradients(x4, [x1]) executor = ad.Executor([x4]) x1_val = 1 x4_val, x1_grad = executor.run(feed_dict={x1: x1_val}) print(x4_val) print(x1_grad)
def mnist_logreg(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False): print("Build logistic regression model...") W1 = ad.Variable(name="W1") b1 = ad.Variable(name="b1") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") z1 = ad.matmul_op(X, W1) y = z1 + ad.broadcastto_op(b1, z1) loss = ad.softmaxcrossentropy_op(y, y_) grad_W1, grad_b1 = ad.gradients(loss, [W1, b1]) executor = ad.Executor([loss, grad_W1, grad_b1, y], ctx=executor_ctx) # Read input data datasets = load_mnist_data("mnist.pkl.gz") train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # Set up minibatch batch_size = 1000 n_train_batches = train_set_x.shape[0] // batch_size n_valid_batches = valid_set_x.shape[0] // batch_size print("Start training loop...") # Initialize parameters W1_val = np.zeros((784, 10)) b1_val = np.zeros((10)) X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) if ndarray.is_gpu_ctx(executor_ctx): W1_val = ndarray.array(W1_val, ctx=executor_ctx) b1_val = ndarray.array(b1_val, ctx=executor_ctx) X_val = ndarray.array(X_val, ctx=executor_ctx) y_val = ndarray.array(y_val, ctx=executor_ctx) lr = 1e-3 for i in range(num_epochs): print("epoch %d" % i) for minibatch_index in range(n_train_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size X_val[:] = train_set_x[minibatch_start:minibatch_end] y_val[:] = convert_to_one_hot( train_set_y[minibatch_start:minibatch_end]) loss_val, grad_W1_val, grad_b1_val, _ = executor.run( feed_dict = {X: X_val, y_: y_val, W1: W1_val, b1: b1_val}) # SGD update if (executor_ctx is None): W1_val = W1_val - lr * grad_W1_val b1_val = b1_val - lr * grad_b1_val else: sgd_update_gpu(W1_val, grad_W1_val, lr) sgd_update_gpu(b1_val, grad_b1_val, lr) if print_loss_val_each_epoch: if isinstance(loss_val, ndarray.NDArray): print(loss_val.asnumpy()) else: print(loss_val) correct_predictions = [] for minibatch_index in range(n_valid_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end] valid_y_val[:] = convert_to_one_hot( valid_set_y[minibatch_start:minibatch_end]) _, _, _, valid_y_predicted = executor.run( feed_dict={ X: valid_X_val, y_: valid_y_val, W1: W1_val, b1: b1_val}, convert_to_numpy_ret_vals=True) correct_prediction = np.equal( np.argmax(valid_y_val, 1), np.argmax(valid_y_predicted, 1)).astype(np.float) correct_predictions.extend(correct_prediction) accuracy = np.mean(correct_predictions) # validation set accuracy=0.928200 print("validation set accuracy=%f" % accuracy)
def mnist_mlp(executor_ctx=None, num_epochs=10, print_loss_val_each_epoch=False): print("Build 3-layer MLP model...") W1 = ad.Variable(name="W1") W2 = ad.Variable(name="W2") W3 = ad.Variable(name="W3") b1 = ad.Variable(name="b1") b2 = ad.Variable(name="b2") b3 = ad.Variable(name="b3") X = ad.Variable(name="X") y_ = ad.Variable(name="y_") # relu(X W1+b1) z1 = ad.matmul_op(X, W1) z2 = z1 + ad.broadcastto_op(b1, z1) z3 = ad.relu_op(z2) # relu(z3 W2+b2) z4 = ad.matmul_op(z3, W2) z5 = z4 + ad.broadcastto_op(b2, z4) z6 = ad.relu_op(z5) # softmax(z5 W2+b2) z7 = ad.matmul_op(z6, W3) y = z7 + ad.broadcastto_op(b3, z7) loss = ad.softmaxcrossentropy_op(y, y_) grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3 = ad.gradients( loss, [W1, W2, W3, b1, b2, b3]) executor = ad.Executor( [loss, grad_W1, grad_W2, grad_W3, grad_b1, grad_b2, grad_b3, y], ctx=executor_ctx) # Read input data datasets = load_mnist_data("mnist.pkl.gz") train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # Set up minibatch batch_size = 1000 n_train_batches = train_set_x.shape[0] // batch_size n_valid_batches = valid_set_x.shape[0] // batch_size print("Start training loop...") # Initialize parameters rand = np.random.RandomState(seed=123) W1_val = rand.normal(scale=0.1, size=(784, 256)) W2_val = rand.normal(scale=0.1, size=(256, 100)) W3_val = rand.normal(scale=0.1, size=(100, 10)) b1_val = rand.normal(scale=0.1, size=(256)) b2_val = rand.normal(scale=0.1, size=(100)) b3_val = rand.normal(scale=0.1, size=(10)) X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) valid_X_val = np.empty(shape=(batch_size, 784), dtype=np.float32) valid_y_val = np.empty(shape=(batch_size, 10), dtype=np.float32) if ndarray.is_gpu_ctx(executor_ctx): W1_val = ndarray.array(W1_val, ctx=executor_ctx) W2_val = ndarray.array(W2_val, ctx=executor_ctx) W3_val = ndarray.array(W3_val, ctx=executor_ctx) b1_val = ndarray.array(b1_val, ctx=executor_ctx) b2_val = ndarray.array(b2_val, ctx=executor_ctx) b3_val = ndarray.array(b3_val, ctx=executor_ctx) X_val = ndarray.array(X_val, ctx=executor_ctx) y_val = ndarray.array(y_val, ctx=executor_ctx) lr = 1.0e-3 for i in range(num_epochs): print("epoch %d" % i) for minibatch_index in range(n_train_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size X_val[:] = train_set_x[minibatch_start:minibatch_end] y_val[:] = convert_to_one_hot( train_set_y[minibatch_start:minibatch_end]) loss_val, grad_W1_val, grad_W2_val, grad_W3_val, \ grad_b1_val, grad_b2_val, grad_b3_val, _ = executor.run( feed_dict={ X: X_val, y_: y_val, W1: W1_val, W2: W2_val, W3: W3_val, b1: b1_val, b2: b2_val, b3: b3_val}) # SGD update if (executor_ctx is None): W1_val = W1_val - lr * grad_W1_val W2_val = W2_val - lr * grad_W2_val W3_val = W3_val - lr * grad_W3_val b1_val = b1_val - lr * grad_b1_val b2_val = b2_val - lr * grad_b2_val b3_val = b3_val - lr * grad_b3_val else: sgd_update_gpu(W1_val, grad_W1_val, lr) sgd_update_gpu(W2_val, grad_W2_val, lr) sgd_update_gpu(W3_val, grad_W3_val, lr) sgd_update_gpu(b1_val, grad_b1_val, lr) sgd_update_gpu(b2_val, grad_b2_val, lr) sgd_update_gpu(b3_val, grad_b3_val, lr) if print_loss_val_each_epoch: if isinstance(loss_val, ndarray.NDArray): print(loss_val.asnumpy()) else: print(loss_val) correct_predictions = [] for minibatch_index in range(n_valid_batches): minibatch_start = minibatch_index * batch_size minibatch_end = (minibatch_index + 1) * batch_size valid_X_val[:] = valid_set_x[minibatch_start:minibatch_end] valid_y_val[:] = convert_to_one_hot( valid_set_y[minibatch_start:minibatch_end]) _, _, _, _, _, _, _, valid_y_predicted = executor.run( feed_dict={ X: valid_X_val, y_: valid_y_val, W1: W1_val, W2: W2_val, W3: W3_val, b1: b1_val, b2: b2_val, b3: b3_val}, convert_to_numpy_ret_vals=True) correct_prediction = np.equal( np.argmax(valid_y_val, 1), np.argmax(valid_y_predicted, 1)).astype(np.float) correct_predictions.extend(correct_prediction) accuracy = np.mean(correct_predictions) # validation set accuracy=0.970800 print("validation set accuracy=%f" % accuracy)