コード例 #1
0
 def test_po_invalid_period_long(self):
     short_period = 10
     long_period = 128
     with self.assertRaises(Exception) as cm:
         price_oscillator.price_oscillator(self.data, short_period, long_period)
     expected = "Error: data_len < period"
     self.assertEqual(str(cm.exception), expected)
コード例 #2
0
 def test_po_period_10_period_20(self):
     short_period = 10
     long_period = 20
     po = price_oscillator.price_oscillator(self.data, short_period, long_period)
     np.testing.assert_array_equal(po, self.po_period_10_period_20_expected)
コード例 #3
0
 def test_po_period_6_period_12(self):
     short_period = 6
     long_period = 12
     po = price_oscillator.price_oscillator(self.data, short_period, long_period)
     np.testing.assert_array_equal(po, self.po_period_6_period_12_expected)
コード例 #4
0
 def test_po_period_8_period_16(self):
     short_period = 8
     long_period = 16
     po = price_oscillator.price_oscillator(self.data, short_period, long_period)
     np.testing.assert_array_equal(po, self.po_period_8_period_16_expected)
コード例 #5
0
def _get_ta_features(high, low, close, volume, desc):
    """
	Returns a dict containing the technical analysis indicators calculated on the given
	high, low, close and volumes.
	"""
    ta = {}

    # Set numpy to ignore division error and invalid values (since not all features are complete)
    old_settings = np.seterr(divide='ignore', invalid='ignore')
    record_count = len(close)

    # Determine relative moving averages
    for _short, _long in desc['rsma']:
        if record_count < _short or record_count < _long:
            logging.error(
                "get_ta_features: not enough records for rsma (short={}, long={}, records={})"
                .format(_short, _long, record_count))
            continue
        ta['rsma_{}_{}'.format(_short,
                               _long)] = relative_sma(close, _short, _long)
    for _short, _long in desc['rema']:
        if record_count < _short or record_count < _long:
            logging.error(
                "get_ta_features: not enough records for rema (short={}, long={}, records={})"
                .format(_short, _long, record_count))
            continue
        ta['rema_{}_{}'.format(_short,
                               _long)] = relative_ema(close, _short, _long)

    # MACD Indicator
    if 'macd' in desc:
        for _short, _long in desc['macd']:
            if record_count < _short or record_count < _long:
                logging.error(
                    "get_ta_features: not enough records for rema (short={}, long={}, records={})"
                    .format(_short, _long, record_count))
                continue
            ta['macd_{}_{}'.format(
                _short, _long)] = moving_average_convergence_divergence(
                    close, _short, _long)

    # Aroon Indicator
    if 'ao' in desc:
        for _period in desc['ao']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for ao (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['ao_{}'.format(_period)] = aroon_oscillator(close, _period)

    # Average Directional Movement Index (ADX)
    if 'adx' in desc:
        for _period in desc['adx']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for adx (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['adx_{}'.format(_period)] = average_directional_index(
                close, high, low, _period)

    # Difference between Positive Directional Index(DI+) and Negative Directional Index(DI-)
    if 'wd' in desc:
        for _period in desc['wd']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for wd (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['wd_{}'.format(_period)] = \
             positive_directional_index(close, high, low, _period) \
             - negative_directional_index(close, high, low, _period)

    # Percentage Price Oscillator
    if 'ppo' in desc:
        for _short, _long in desc['ppo']:
            if record_count < _short or record_count < _long:
                logging.error(
                    "get_ta_features: not enough records for ppo (short={}, long={}, records={})"
                    .format(_short, _long, record_count))
                continue
            ta['ppo_{}_{}'.format(_short, _long)] = price_oscillator(
                close, _short, _long)

    # Relative Strength Index
    if 'rsi' in desc:
        for _period in desc['rsi']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for rsi (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['rsi_{}'.format(_period)] = relative_strength_index(
                close, _period)

    # Money Flow Index
    if 'mfi' in desc:
        for _period in desc['mfi']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for mfi (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['mfi_{}'.format(_period)] = money_flow_index(
                close, high, low, volume, _period)

    # True Strength Index
    if 'tsi' in desc and len(close) >= 40:
        if record_count < 40:
            logging.error(
                "get_ta_features: not enough records for tsi (period={}, records={})"
                .format(40, record_count))
        else:
            ta['tsi'] = true_strength_index(close)

    if 'boll' in desc:
        for _period in desc['stoch']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for boll (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['boll_{}'.format(_period)] = percent_b(close, _period)

    # Stochastic Oscillator
    if 'stoch' in desc:
        for _period in desc['stoch']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for stoch (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['stoch_{}'.format(_period)] = percent_k(close, _period)
    # ta.py['stoch'] = percent_k(high, low, close, 14)

    # Chande Momentum Oscillator
    ## Not available in ta.py
    if 'cmo' in desc:
        for _period in desc['cmo']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for cmo (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['cmo_{}'.format(_period)] = chande_momentum_oscillator(
                close, _period)

    # Average True Range Percentage
    if 'atrp' in desc:
        for _period in desc['atrp']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for atrp (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['atrp_{}'.format(_period)] = average_true_range_percent(
                close, _period)

    # Percentage Volume Oscillator
    if 'pvo' in desc:
        for _short, _long in desc['pvo']:
            if record_count < _short or record_count < _long:
                logging.error(
                    "get_ta_features: not enough records for pvo (short={}, long={}, records={})"
                    .format(_short, _long, record_count))
                continue
            ta['pvo_{}_{}'.format(_short, _long)] = volume_oscillator(
                volume, _short, _long)

    # Force Index
    if 'fi' in desc:
        fi = force_index(close, volume)
        for _period in desc['fi']:
            if record_count < _period:
                logging.error(
                    "get_ta_features: not enough records for atrp (period={}, records={})"
                    .format(_period, record_count))
                continue
            ta['fi_{}'.format(_period)] = exponential_moving_average(
                fi, _period)

    # Accumulation Distribution Line
    if 'adi' in desc:
        ta['adi'] = accumulation_distribution(close, high, low, volume)

    # On Balance Volume
    if 'obv' in desc:
        ta['obv'] = on_balance_volume(close, volume)

    # Restore numpy error settings
    np.seterr(**old_settings)

    return ta