rgb_ext = {'primesense': 'png', 'kinect': 'png', 'canon': 'jpg'} obj_colors_path = os.path.join('data', 'obj_rgb.txt') vis_rgb_path_mask = os.path.join(output_dir, '{:02d}_{}_{}_{:04d}_rgb.png') vis_depth_path_mask = os.path.join(output_dir, '{:02d}_{}_{}_{:04d}_depth_diff.png') misc.ensure_dir(output_dir) obj_colors = inout.load_colors(obj_colors_path) plt.ioff() # Turn interactive plotting off for scene_id in scene_ids: # Load info about the test images (including camera parameters etc.) scene_info_path = scene_info_path_mask.format(device, scene_id) scene_info = inout.load_info(scene_info_path) scene_gt_path = scene_gt_path_mask.format(device, scene_id) scene_gt = inout.load_gt(scene_gt_path) # Load models of objects present in the scene scene_obj_ids = set() for gt in scene_gt[0]: scene_obj_ids.add(gt['obj_id']) models = {} for scene_obj_id in scene_obj_ids: model_path = model_path_mask.format(scene_obj_id) models[scene_obj_id] = inout.load_ply(model_path) for im_id, im_info in scene_info.items(): if im_id % im_step != 0:
'{:02d}_{}_{}_{:04d}_depth_diff.png') misc.ensure_dir(output_dir) obj_colors = inout.load_colors(obj_colors_path) plt.ioff() # Turn interactive plotting off for obj_id in obj_ids: # Load object model model_path = model_path_mask.format(obj_id) model = inout.load_ply(model_path) # Load info about the templates (including camera parameters etc.) obj_info_path = obj_info_path_mask.format(device, obj_id) obj_info = inout.load_info(obj_info_path) obj_gt_path = obj_gt_path_mask.format(device, obj_id) obj_gt = inout.load_gt(obj_gt_path) for im_id in obj_info.keys(): if im_id % im_step != 0: continue print('obj: ' + str(obj_id) + ', device: ' + device + ', im_id: ' + str(im_id)) im_info = obj_info[im_id] im_gt = obj_gt[im_id] # Get intrinsic camera parameters and object pose K = im_info['cam_K']
depth_path_mask = os.path.join(data_path, 'test_{}', '{:02d}', 'depth', '{:04d}.png') rgb_ext = {'primesense': 'png', 'kinect': 'png', 'canon': 'jpg'} obj_colors_path = os.path.join('data', 'obj_rgb.txt') vis_rgb_path_mask = os.path.join(output_dir, '{:02d}_{}_{}_{:04d}_rgb.png') vis_depth_path_mask = os.path.join(output_dir, '{:02d}_{}_{}_{:04d}_depth_diff.png') misc.ensure_dir(output_dir) obj_colors = inout.load_colors(obj_colors_path) plt.ioff() # Turn interactive plotting off for scene_id in scene_ids: # Load info about the test images (including camera parameters etc.) scene_info_path = scene_info_path_mask.format(device, scene_id) scene_info = inout.load_info(scene_info_path) scene_gt_path = scene_gt_path_mask.format(device, scene_id) scene_gt = inout.load_gt(scene_gt_path) # Load models of objects present in the scene scene_obj_ids = set() for gt in scene_gt[0]: scene_obj_ids.add(gt['obj_id']) models = {} for scene_obj_id in scene_obj_ids: model_path = model_path_mask.format(scene_obj_id) models[scene_obj_id] = inout.load_ply(model_path) for im_id, im_info in scene_info.items(): if im_id % im_step != 0: