def modify(cls, old, new, fun, fun_kwargs={}, memmap=True): """ Reads an image (arg old), modifies old.data using function passed as arg fun and writes an image containing the modified data as a new image (arg new). The function passes (arg fun) has to have signature fun(Image, **fun_kwargs) and to return image data (ndarray). Meant for mrc files. The new image will have exactly the same header as the old image, except for the shape, length and min/max/mean values, which are set according to the new image data. Also works if old is an mrc and new is a raw file. Arguments: - old: old mrc image file name - new: new (subtomogram) mrc image file name - fun: function that takes old.data as an argument - memmap: if True, read memory map instead of the whole image Returns an instance of this class that holds the new image. This instance contains attribute image_io (pyto.io.ImageIO) that was used to write the new file. """ # read header from pyto.io.image_io import ImageIO as ImageIO image_io = ImageIO() image_io.readHeader(file=old) # read image image = cls.read(file=old, memmap=memmap) # modify data data = fun(image, **fun_kwargs) # write new (modified data) image_io.setData(data=data) image_io.write(file=new, pixel=image_io.pixel) #image_io.setFileFormat(file_=new) #if image_io.fileFormat == 'mrc': # image_io.write(file=new, pixel=image_io.pixel) #elif image_io.fileFormat == 'raw': # image_io.write(file=new, pixel=image_io.pixel) # image.image_io = image_io return image
def fix(self, mode=None, microscope=None, out=None, pad=0, start=1): """ Fixes wrong data in headers. Mode determines which values are fixed. Currently defined modes are: - 'polara_fei-tomo': images obtained on Polara (at MPI of Biochemistry) using FEI tomography package and saved in EM format. - 'krios_fei-tomo': images obtained on Krios (at MPI of Biochemistry) using FEI tomography package and saved in EM format. - 'cm300': images from cm300 in EM format - None: doesn't do anyhing If mode is 'polara_fei-tomo', then arg microscope has to be specified. The allowed values are specified in microscope_db.py. Currently (r564) these are: 'polara-1_01-07', 'polara-1_01-09' and 'polara-2_01-09'. Works for individual images only (not for stacks), because stacks are typically recorded by SerialEM and do not need fixing. Arguments: - out: directory where the fixed images are written. The fixed and the original images have the same base names. - mode: fix mode """ # parse arguments #if path is None: path = self.path #if mode is None: mode = self.mode # check for out, pad and start also? # make out directory if it doesn't exists if (out is not None) and (not os.path.isdir(out)): os.makedirs(out) # loop over images images_iter = self.images(out=out, pad=pad, start=start) for (in_path, out_path) in images_iter: # read image file image = ImageIO(file=in_path) image.read() # fix image.fix(mode=mode, microscope=microscope) # write fixed files image.write(file=out_path)
def testPixelSize(self): """ Tests pixel size in read and write """ # arrays #ar_int8_2 = numpy.arange(24, dtype='int8').reshape((4,3,2)) ar_int16_2 = numpy.arange(24, dtype='int16').reshape((4, 3, 2)) # file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_2, pixel=2.1) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_almost_equal(file_in.pixel, 2.1)
def setUp(self): """ Sets absolute path to this file directory and saves it as self.dir """ # set absolute path to current dir working_dir = os.getcwd() file_dir, name = os.path.split(__file__) self.dir = os.path.join(working_dir, file_dir) # make raw file self.raw_shape = (4, 3, 2) self.raw_dtype = 'int16' self.raw_data = numpy.arange(24, dtype=self.raw_dtype).reshape( self.raw_shape) raw = ImageIO() self.raw_file_name = 'data.raw' raw.write(file=self.raw_file_name, data=self.raw_data)
def cut(cls, old, new, inset, memmap=True): """ Reads an image (arg old), cuts a subtomo defined by arg inset and writes the new image (arg new). Meant for mrc files. The new image will have exactly the same header as the old image, except for the shape, length and min/max/mean values, which are set according to the new image data. Arguments: - old: old mrc image file name - new: new (subtomogram) mrc image file name - inset: defines the subtomogram - memmap: if True, read memory map instead of the whole image Returns an instance of this class that holds the new image. This instance contains attribute image_io (pyto.io.ImageIO) that was used to write the new file. """ # read header from pyto.io.image_io import ImageIO as ImageIO image_io = ImageIO() image_io.readHeader(file=old) # read image and cut inset image = cls.read(file=old, memmap=memmap) image.useInset(inset=inset) # write new image_io.setData(data=image.data) image_io.write(file=new, pixel=image_io.pixel) # image.image_io = image_io return image
def write( self, file, byteOrder=None, dataType=None, fileFormat=None, arrayOrder=None, shape=None, length=None, pixel=1, casting=u'unsafe', header=False, existing=False): """ Writes image to a file in em, mrc or raw format. If fileFormat is not given it is determined from the file extension. Data (image) has to be specified by arg data or previously set self.data attribute. Data type and shape are determined by args dataType and shape, or by the data type and shape of the data, in this order.. If data type (determined as described above) is not one of the data types used for the specified file format (ubyte, int16, float32, complex64 for mrc and uint8, uint16, int32, float32, float64, complex64 for em), then the value of arg dataType has to be one of the appropriate data types. Otherwise an exception is raised. If data type (determined as described above) is different from the type of actual data, the data is converted to the data type. Note that if these two types are incompatible according to arg casting, an exception is raised. The data is converted to the (prevously determined) shape and array order and then written. That means that the shape and the array order may be changed in the original array (argument data or self.data). However, array order is not written the header. Additional header parameters are determined for mrc format. Nxstart, nystart and nzstart are set to 0, while mx, my and mz to the corresponding data size (grid size). xlen, ylen and zlen are taken from arg length if given, or obtained by multiplying data size with pixel size (in nm). If arg header is True and if the file type corresponding to arg file is the same as self.fileFormat, a header consisting of self.header (list) and self.extendedHeaderString (str) are written as file header. The extended header should be used only for mrc format. Arguments: - file: file name - fileFormat: 'em', 'mrc', or 'raw' - byteOrder: '<' (little-endian), '>' (big-endian) - dataType: any of the numpy types, e.g.: 'int8', 'int16', 'int32', 'float32', 'float64' - arrayOrder: 'C' (z-axis fastest), or 'F' (x-axis fastest) - shape: (x_dim, y_dim, z_dim) - length: (list aor ndarray) length in each dimension in nm (used only for mrc format) - pixel: pixel size in nm (used only for mrc format if length is None) - casting: Controls what kind of data casting may occur: 'no', 'equiv', 'safe', 'same_kind', 'unsafe'. Identical to numpy.astype() method. - header: flag indicating if self.header is written as file header - existing: flag indicating whether the already existing file_io attribute is used for writting Returns file instance. """ # write file from pyto.io.image_io import ImageIO as ImageIO if existing and (self.file_io is not None): fi = self.file_io fi = ImageIO() # get file format of the file to be written fi.setFileFormat(file_=file, fileFormat=fileFormat) new_file_format = fi.fileFormat # set header to pass as argument, if new and old file types are the same header_arg = None extended = None try: if header and (new_file_format == self.fileFormat): header_arg = self.header extended = self.extendedHeaderString except AttributeError: pass # write fi.write( file=file, data=self.data, fileFormat=fileFormat, byteOrder=byteOrder, dataType=dataType, arrayOrder=arrayOrder, shape=shape, length=length, pixel=pixel, casting=casting, header=header_arg, extended=extended) return fi.file_
def testWrite(self): """ Tests write (and implicitly read), for em, mrc and raw format. """ # arrays ar_uint8 = numpy.array([54, 200, 5, 7, 45, 123], dtype='uint8').reshape((3, 1, 2)) ar_int8 = numpy.array([54, 2, -5, 7, 45, 123], dtype='uint8').reshape( (3, 1, 2)) ar_uint16 = numpy.array([1034, 546, 248, 40000, 2345, 365, 4876, 563], dtype='uint16').reshape((2, 2, 2)) ar_int16 = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16').reshape((2, 2, 2)) ar_int32 = numpy.array( [1034, 56546, -223448, 156, 2345, 2**31 - 10, -884876, 563], dtype='int32').reshape((2, 2, 2)) ar_uint32 = numpy.array( [1034, 56546, 223448, 156, 2345, 365, 884876, 2**32 - 10], dtype='uint32').reshape((2, 2, 2)) ar_int8_2 = numpy.arange(24, dtype='int8').reshape((4, 3, 2)) ar_int16_2 = numpy.arange(24, dtype='int16').reshape((4, 3, 2)) ar2_int16 = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16').reshape((2, 4)) ar_int16_f = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16', order='F').reshape((2, 2, 2)) ar_int16_c = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16', order='C').reshape((2, 2, 2)) # em uint8 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint8) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint8') np_test.assert_equal(file_in.data, ar_uint8) # em uint16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint16) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint16') np_test.assert_equal(file_in.data, ar_uint16) # em int16 converted to int32, safe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int16, dataType='int32', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'int32') np_test.assert_equal(file_in.data, ar_int16) # em int16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_int16, 'casting': 'safe' }) # em int16 converted to uint16, unsafe casting file_out = ImageIO() print("int16 to uint16") file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int16, dataType='uint16', casting='unsafe') print("int16 to uint16 end") file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint16') np_test.assert_equal(file_in.data.dtype, numpy.dtype('uint16')) np_test.assert_equal(file_in.data[0, 1, 0] == ar_int16[0, 1, 0], False) # em int16 to uint16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_int16, 'dataType': 'uint16', 'casting': 'safe' }) # em uint16 to int16, unsafe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_uint16, 'dataType': 'int16', 'casting': 'unsafe' }) # em uint32 to int32, safe casting print("uint32 to int32 safe") file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_uint32, 'dataType': 'int32', 'casting': 'safe' }) # em uint32 converted to int32, unsafe casting print("uint32 to int32") file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint32, dataType='int32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'int32') #np_test.assert_equal(file_in.data, ar_uint32) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0], True) np_test.assert_equal(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1], False) # em uint32 to float32, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.em'), 'data': ar_uint32, 'dataType': 'float32', 'casting': 'safe' }) # em uint32 to float32, unsafe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint32, dataType='float32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float32') #np_test.assert_almost_equal(file_in.data, ar_uint32) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0], True) np_test.assert_equal(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1], False) # em int32 to float32, unsafe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int32, dataType='float32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float32') #np_test.assert_almost_equal(file_in.data, ar_int32) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_int32[0, 0, 0], True) np_test.assert_equal(file_in.data[1, 0, 1] == ar_int32[1, 0, 1], False) # em int32 to float64, safe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int32, dataType='float64', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float64') np_test.assert_almost_equal(file_in.data, ar_int32) # mrc data type and shape from args file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int8_2, shape=(2, 3, 4), dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (2, 3, 4)) # mrc data type and shape from previously given data file_out = ImageIO() file_out.setData(ar_int16_2) file_out.write(file=os.path.join(self.dir, '_test.mrc')) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (4, 3, 2)) # mrc data type and shape from attributes file_out = ImageIO() file_out.data = ar_int8_2 file_out.shape = (2, 3, 4) file_out.dataType = 'int16' file_out.write(file=os.path.join(self.dir, '_test.mrc')) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (2, 3, 4)) # mrc data type and shape from data file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_2) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (4, 3, 2)) # mrc uint8, same as ubyte file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_uint8) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'ubyte') np_test.assert_almost_equal(file_in.data, ar_uint8) # mrc uint16 file_out = ImageIO() np_test.assert_raises((KeyError, TypeError), file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_uint16 }) # mrc uint16 to int16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_uint16, 'dataType': 'ubyte', 'casting': 'safe' }) # mrc uint16 to int16, unsafe casting file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_uint16, dataType='int16', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') #np_test.assert_almost_equal(file_in.data, ar_uint16) should fail np_test.assert_equal(file_in.data[0, 0, 0] == ar_uint16[0, 0, 0], True) np_test.assert_equal(file_in.data[0, 1, 1] == ar_uint16[0, 1, 1], False) # mrc int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, pixel=2.3) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int16) np_test.assert_equal(file_in.pixel, [2.3, 2.3, 2.3]) np_test.assert_equal(file_in.pixelsize, 2.3) # mrc int16 2D file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar2_int16, pixel=3.4) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data[:, :, 0], ar2_int16) np_test.assert_equal(file_in.pixelsize, 3.4) # mrc int8 to int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int8, dataType='int16', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int8) # mrc int32 file_out = ImageIO() np_test.assert_raises((KeyError, TypeError), file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32 }) # mrc int32 to int16 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32, 'dataType': 'int16', 'casting': 'safe' }) # mrc int32 to float32 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32, 'dataType': 'float32', 'casting': 'safe' }) # mrc int32 to complex64 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.mrc'), 'data': ar_int32, 'dataType': 'complex64', 'casting': 'safe' }) # raw int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.raw'), data=ar_int16) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.raw'), dataType='int16', shape=(2, 2, 2)) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int16) # raw int8 to int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.raw'), data=ar_int8, dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.raw'), dataType='int16', shape=(3, 1, 2)) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int8) # raw int16 to int8 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{ 'file': os.path.join(self.dir, '_test.raw'), 'data': ar_int16, 'dataType': 'int8', 'casting': 'safe' }) # explain error messages printed before print("It's fine if few error messages were printed just before " + "this line, because they have been caught.") # shape param file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (2, 2, 2)) file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16', shape=(1, 4, 2)) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (1, 4, 2)) file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16', shape=(4, 2)) file_in.readHeader(file=os.path.join(self.dir, '_test.mrc')) file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (4, 2, 1)) file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16', shape=(2, 2, 2)) np_test.assert_equal(file_in.data.shape, (2, 2, 2)) # array order C, read write default (F) file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_c) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.data, ar_int16_c) # array order C, read write C file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_c, arrayOrder='C') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), arrayOrder='C') np_test.assert_equal(file_in.data, ar_int16_c) # array order F, read write default (F) file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_f) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.data, ar_int16_f) # array order F, read write F file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_f, arrayOrder='F') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), arrayOrder='F') np_test.assert_equal(file_in.data, ar_int16_f)
def sort(self, seq=None, out=None, pad=0, start=1, fix_mode=None, microscope=None, limit=None, limit_mode='std', size=5, byte_order=None, test=False): """ Sorts series, fixes image headers, corrects the data and writes the sorted and corrected images. A series is sorted by tilt angle that is read from each image, or by the elements of seq (not necessarily angles) if given. Sorted images names have the form: directory/name + number + extension. where out is: directory/name_.extension and numbers start with start argument and are padded with pad (argument) number of zeros (see self.images). Argument fix_mode detemines how the headers are fixed: - None: no fixing - 'polara_fei-tomo': for series obtained on polara with the FEI tomo software - 'krios_fei-tomo': for series obtained on krios with the FEI tomo software - 'cm300': for series from CM300 (see pyto.io.image_io). If fix_mode is 'polara_fei-tomo', then arg microscope has to be specified. The allowed values are specified in microscope_db.py. Currently (r564) these are: 'polara-1_01-07', 'polara-1_01-09' and 'polara-2_01-09'. If fix_mode is None, microscope does nor need to be specified. Series recorded by SerialEM typically do not need fixing. Works for individual images only (not for stacks). Arguments: - seq: if specified this sequence used for sorting projection, otherwise tilt angles are used - out: sorted series path - pad: number of digits of a projection number in the sorted series file name - start: start number for sorted series file names - fix_mode: determined if and how headers are fixed - microscope: microscope type, see pyto.io.microscope_db - limit_mode: 'abs' or 'std' - limit: absolute greyscale limit if limit_mode is 'abs', or the number of stds above and below the mean - size: size of the subarray used to find the replacement value for a voxel that's out of the limits - byte_order: '<' or '>', default is the byte order of the machine - test: if True all steps are done except writing corrected images """ # shortcuts path = self.path match_mode = self.mode # make tilt angles - file names dictionary # ToDo: use self.sortPath() instead in_paths = [] images_iter = self.images(mode=match_mode) if seq is None: seq = [] # get tilt angles from file headers for in_path in images_iter: image = ImageIO(file=in_path) image.readHeader() seq.append(image.tiltAngle) in_paths.append(in_path) image.file_.close() else: # use seq to sort for in_path in images_iter: in_paths.append(in_path) # sort (note: dictionary angle:in_path fails for multiple files with # same angles) seq_arr = numpy.array(seq) in_paths_arr = numpy.array(in_paths) sort_ind = seq_arr.argsort() sorted_seq = seq_arr[sort_ind] sorted_in_paths = in_paths_arr[sort_ind] # parse out and make out directory if it doesn't exists if out is not None: out_dir, out_base_pat = os.path.split(out) if out_dir == '': out_dir = '.' if (not test) and (not os.path.isdir(out_dir)): os.makedirs(out_dir) else: out_path = None # initialize file counter if start is None: ind = None else: ind = start - 1 # loop over sorted in files for (item, in_path) in zip(sorted_seq, sorted_in_paths): if ind is not None: ind += 1 # parse in file path in_dir, in_base = os.path.split(in_path) if out is not None: # make out file path out_base = self.convertBase(in_base=in_base, out_base=out_base_pat, pad=pad, index=ind) out_path = os.path.join(out_dir, out_base) # read files im_io = ImageIO(file=in_path) im_io.read() # log logging.info("%5.1f: %s -> %s %6.1f %6.1f" \ % (item, in_path, out_path, \ im_io.data.mean(), im_io.data.std())) # fix if fix_mode is not None: im_io.fix(mode=fix_mode, microscope=microscope) # limit if limit is not None: image = Image(im_io.data) image.limit(limit=limit, mode=limit_mode, size=size) # write fixed file if not test: if byte_order is None: byte_order = im_io.machineByteOrder im_io.write(file=out_path, byteOrder=byte_order, data=image.data) else: logging.info(" " + str(item) + ": " + in_path + " -> "\ + str(out_path))