コード例 #1
0
def split_matrix(parId, iterator):
        
    x0 = -1
    y0 = -1
    z0 = -1
    t0 =  0 
    for x in iterator:
        x0 = x[1][0]
        y0 = x[1][1]
        z0 = x[1][2]
        t0 += 1
    
    
    vol10 = npy2vol(BC_vol1.value, 3)
    vol20 = npy2vol(BC_vol2.value, 3)
    boxhalf_x1 = BC_sizeX.value / 2 
    boxhalf_y1 = BC_sizeY.value / 2 
    boxhalf_z1 = BC_sizeZ.value / 2 
    vol1_sub = subvolume(vol10, x0 - boxhalf_x1, y0 - boxhalf_y1, z0 - boxhalf_z1, BC_sizeX.value, BC_sizeY.value, BC_sizeZ.value)
    vol2_sub = subvolume(vol20, x0 - boxhalf_x1, y0 - boxhalf_y1, z0 - boxhalf_z1, BC_sizeX.value, BC_sizeY.value, BC_sizeZ.value)
    
    
    avg1 = mean(vol1_sub)
    vol1_sub1 = hanning_taper(vol1_sub, avg1)
    avg2 = mean(vol2_sub)
    vol2_sub1 = hanning_taper(vol2_sub, avg2)


    res = fsc2_v(vol1_sub1, vol2_sub1, BC_fsc_criterion.value, BC_max_resolution.value, BC_pixelSize.value, x0, y0, z0)
    tup = (round(res,6), x0, y0, z0)
     
    del avg1, avg2, vol1_sub1, vol2_sub1
    del vol1_sub, vol2_sub, res, vol10, vol20, boxhalf_x1, boxhalf_y1, boxhalf_z1, x0, y0, z0, t0
    
    return tup
コード例 #2
0
ファイル: whiteNoise.py プロジェクト: xmzzaa/PyTom
def add(volume, SNR=1):
    """
    add Adds white noise to volume
    @param volume: A volume
    @param SNR: Signal to Noise ratio of result
    @type SNR: int or float > 0 
    @return: Volume containing noise with SNR == SNR
    @author: Thomas Hrabe  
    """

    if (SNR < 0):
        return volume

    from math import sqrt
    from pytom_volume import vol, mean, variance, gaussianNoise

    m = mean(volume)
    s = sqrt(variance(volume, False) / SNR)  # SNR = Var(signal) / Var(noise)

    #    s = sqrt(variance(volume,False)/SNR)-variance(volume,False)
    #
    #    if s<0:
    #        return volume
    #    elif s==0:
    #        s =1

    noise = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ())

    gaussianNoise(noise, m, s)  # s is actually the std

    result = volume + noise

    return result
コード例 #3
0
def mean0std1(volume, copyFlag=False):
    """
    mean0std1: normalises input volume to mean 0 and std 1. Procedure is performed inplace if copyFlag is unspecified!!!
    @param volume: Data containing either an image or a volume
    @param copyFlag: If True a copy of volume will be returned. False unless specified otherwise. 
    @return: If copyFlag == True, then return a normalised copy.
    @author: Thomas Hrabe
    """
    import pytom_volume
    from math import sqrt
    from pytom.tools.maths import epsilon

    if volume.__class__ == pytom_volume.vol_comp:
        from pytom.basic.fourier import ifft, iftshift
        volume = iftshift(ifft(volume))

    if not copyFlag:
        volumeMean = pytom_volume.mean(volume)
        volume.shiftscale(-volumeMean, 1)
        volumeStd = sqrt(pytom_volume.variance(volume, False))

        if volumeStd < epsilon:
            raise ValueError(
                'pytom_normalise.mean0std1 : The standard deviation is too low for division! '
                + str(volumeStd))

        volume.shiftscale(0, 1. / float(volumeStd))
    else:
        volumeCopy = pytom_volume.vol(volume.sizeX(), volume.sizeY(),
                                      volume.sizeZ())
        volumeCopy.copyVolume(volume)
        volumeMean = pytom_volume.mean(volumeCopy)
        volumeCopy.shiftscale(-1. * volumeMean, 1)
        volumeStd = sqrt(pytom_volume.variance(volumeCopy, False))

        if volumeStd < epsilon:
            raise ValueError(
                'pytom_normalise.mean0std1 : The standard deviation is too low for division! '
                + str(volumeStd))

        #volumeCopy.shiftscale(-1.*volumeMean,1)
        volumeCopy.shiftscale(0, 1 / float(volumeStd))

        return volumeCopy
コード例 #4
0
ファイル: pytom_NormTest.py プロジェクト: xmzzaa/PyTom
    def mean0std1_Test(self):

        import pytom_volume
        from pytom.basic.normalise import mean0std1
        v = pytom_volume.read('./testData/ribo.em')

        m = mean0std1(v, True)

        me = pytom_volume.mean(m)
        var = pytom_volume.variance(m, False)

        assert epsilon >= me >= -epsilon  #mean value test
        assert 1 + epsilon >= var >= 1 - epsilon
コード例 #5
0
def rescale_to_avg_std(volume1, nuavg, nustd):
    avg = mean(volume1)
    std = np.sqrt(variance(volume1, False))

    if (std > 1e-30):
        scale = nustd/std
    else: 
        scale = 1
    shift = nuavg - avg*scale
    
    x = volume1.sizeX()
    y = volume1.sizeY()
    z = volume1.sizeZ()
    
    for zz in xrange(0,z):
        for yy in xrange(0,y):
            for xx in xrange(0,x):
                val = volume1(xx,yy,zz)*scale + shift
                volume1.setV(round(val,6),xx,yy,zz) 
    
    return volume1
コード例 #6
0
ファイル: auto_focus_classify.py プロジェクト: mvanevic/PyTom
def calculate_difference_map(v1,
                             band1,
                             v2,
                             band2,
                             mask=None,
                             focus_mask=None,
                             align=True,
                             sigma=None,
                             threshold=0.4):
    """mask if for alignment, while focus_mask is for difference map.
    """
    from pytom_volume import vol, power, abs, limit, transformSpline, variance, mean, max, min
    from pytom.basic.normalise import mean0std1
    from pytom.basic.filter import lowpassFilter

    # do lowpass filtering first
    lv1 = lowpassFilter(v1, band1, band1 / 10.)[0]
    lv2 = lowpassFilter(v2, band2, band2 / 10.)[0]

    # do alignment of two volumes, if required. v1 is used as reference.
    if align:
        from sh_alignment.frm import frm_align
        band = int(band1 if band1 < band2 else band2)
        pos, angle, score = frm_align(lv2, None, lv1, None, [4, 64], band,
                                      lv1.sizeX() // 4, mask)
        shift = [
            pos[0] - v1.sizeX() // 2, pos[1] - v1.sizeY() // 2,
            pos[2] - v1.sizeZ() // 2
        ]

        # transform v2
        lvv2 = vol(lv2)
        transformSpline(lv2, lvv2, -angle[1], -angle[0], -angle[2],
                        lv2.sizeX() // 2,
                        lv2.sizeY() // 2,
                        lv2.sizeZ() // 2, -shift[0], -shift[1], -shift[2], 0,
                        0, 0)
    else:
        lvv2 = lv2

    # do normalization
    mean0std1(lv1)
    mean0std1(lvv2)

    # only consider the density beyond certain sigma
    if sigma is None or sigma == 0:
        pass
    elif sigma < 0:  # negative density counts
        assert min(lv1) < sigma
        assert min(lvv2) < sigma
        limit(lv1, 0, 0, sigma, 0, False, True)
        limit(lvv2, 0, 0, sigma, 0, False, True)
    else:  # positive density counts
        assert max(lv1) > sigma
        assert max(lvv2) > sigma
        limit(lv1, sigma, 0, 0, 0, True, False)
        limit(lvv2, sigma, 0, 0, 0, True, False)

    # if we want to focus on specific area only
    if focus_mask:
        lv1 *= focus_mask
        lvv2 *= focus_mask

    # calculate the STD map
    avg = (lv1 + lvv2) / 2
    var1 = avg - lv1
    power(var1, 2)
    var2 = avg - lvv2
    power(var2, 2)

    std_map = var1 + var2
    power(std_map, 0.5)

    # calculate the coefficient of variance map
    # std_map = std_map/abs(avg)

    if focus_mask:
        std_map *= focus_mask

    # threshold the STD map
    mv = mean(std_map)
    threshold = mv + (max(std_map) - mv) * threshold
    limit(std_map, threshold, 0, threshold, 1, True, True)

    # do a lowpass filtering
    std_map1 = lowpassFilter(std_map, v1.sizeX() // 4, v1.sizeX() / 40.)[0]

    if align:
        std_map2 = vol(std_map)
        transformSpline(std_map1, std_map2, angle[0], angle[1], angle[2],
                        v1.sizeX() // 2,
                        v1.sizeY() // 2,
                        v1.sizeZ() // 2, 0, 0, 0, shift[0], shift[1], shift[2])
    else:
        std_map2 = std_map1

    limit(std_map1, 0.5, 0, 1, 1, True, True)
    limit(std_map2, 0.5, 0, 1, 1, True, True)

    # return the respective difference maps
    return (std_map1, std_map2)
コード例 #7
0
    fsc_criterion=0.143
    window_size = L
    increment= 4 
    step = increment 
    numberBands = int(window_size/8)  
    sizeX = sizeY = sizeZ = window_size


    conf = SparkConf().setAppName("parallel local FSC").setMaster("local[*]") 
    sc = SparkContext(conf=conf)
    vol1File = "./emd_3802_half_map_1.map"
    vol2File = "./emd_3802_half_map_2.map"
    hm1 = read(vol1File) 
    hm2 = read(vol2File) 

    avg1 = mean(hm1)
    std1 = np.sqrt(variance(hm1, False))
    hm20 = rescale_to_avg_std(hm2, avg1, std1)

    
    nz = hm1.sizeZ()
    ny = hm1.sizeY()
    nx = hm1.sizeX()

    mask_level = -1
    vz = vy = vx = window_size/2 
    pmask = vol(nx,ny,nz)
    pmask.setAll(1)
    
    # set up the mask for which voxels to calculate
    total_num = 0 
コード例 #8
0
ファイル: toImage.py プロジェクト: xmzzaa/PyTom
def _dspcub(volume, sigma=None, projectionAxis='z'):
    """
    _dspcub: Creates a dspcub image
    dspcub2PNG: display z-slices in 2D image
    @param volume: The input volume
    @type volume: L{pytom_volume.vol}
    @parameter sigma: thresholding as multiples of standard deviation sigma
    @type sigma: float
    @param projectionAxis: Defines the axis. Default is z, means you look on the xy plane. (x equals to 'yz' plane, y to 'xz') 
    @return: Image
    @rtype: Image
    @@author: Pia Unverdorben 
    """

    if volume.sizeZ() == 1:
        raise Exception('You can use ')

    import Image
    from pytom_volume import min, max, mean, variance, limit, subvolume
    from math import sqrt, ceil, floor

    sizeX = volume.sizeX()
    sizeY = volume.sizeY()
    sizeZ = volume.sizeZ()

    if projectionAxis == 'x':
        imagesPerRow = int(floor(sqrt(sizeX)))
        size1 = float(sizeX)
        sizeI = sizeY
        sizeJ = sizeZ
    elif projectionAxis == 'y':
        imagesPerRow = int(floor(sqrt(sizeY)))
        size1 = float(sizeY)
        sizeI = sizeX
        sizeJ = sizeZ
    elif projectionAxis == 'z':
        imagesPerRow = int(floor(sqrt(sizeZ)))
        size1 = float(sizeZ)
        sizeI = sizeX
        sizeJ = sizeY

    numberIterations = imagesPerRow * imagesPerRow

    if size1 < numberIterations:
        iterationSteps = float(numberIterations / size1)
    else:
        iterationSteps = float(size1 / numberIterations)

    iterationSteps = int(iterationSteps)

    if projectionAxis == 'x':
        img = Image.new('L', (sizeY * imagesPerRow, sizeZ * imagesPerRow))
    elif projectionAxis == 'y':
        img = Image.new('L', (sizeX * imagesPerRow, sizeZ * imagesPerRow))
    elif projectionAxis == 'z':
        img = Image.new('L', (sizeX * imagesPerRow, sizeY * imagesPerRow))

    # normalize according to standard deviation if sigma is specified
    if sigma:
        meanv = mean(volume)
        stdv = sqrt(variance(volume, False))
        minValue = meanv - float(sigma) * stdv
        maxValue = meanv + float(sigma) * stdv
    else:
        minValue = min(volume)
        maxValue = max(volume)

    for sliceNumber in range(0, numberIterations, iterationSteps):

        if projectionAxis == 'x':
            png = Image.new('L', (sizeY, sizeZ))
        elif projectionAxis == 'y':
            png = Image.new('L', (sizeX, sizeZ))
        elif projectionAxis == 'z':
            png = Image.new('L', (sizeX, sizeY))

        (yvalue, xvalue) = divmod(sliceNumber, imagesPerRow)

        if projectionAxis == 'x':
            vol = subvolume(volume, sliceNumber, 0, 0, 1, sizeY, sizeZ)
        elif projectionAxis == 'y':
            vol = subvolume(volume, 0, sliceNumber, 0, sizeX, 1, sizeZ)
        elif projectionAxis == 'z':
            vol = subvolume(volume, 0, 0, sliceNumber, sizeX, sizeY, 1)

        vol.shiftscale(-minValue, 1)
        vol.shiftscale(0, 255 / maxValue)

        for i in range(sizeI):
            for j in range(sizeJ):

                if projectionAxis == 'x':
                    value = vol(0, i, j)
                elif projectionAxis == 'y':
                    value = vol(i, 0, j)
                elif projectionAxis == 'z':
                    value = vol(i, j, 0)

                png.putpixel((i, j), int(value))

        img.paste(png, (xvalue * sizeI, yvalue * sizeJ))

    return img