コード例 #1
0
ファイル: test_camera_pixels.py プロジェクト: r23/pytorch3d
 def test_raysampler(self):
     data = _CommonData()
     gridsampler = NDCMultinomialRaysampler(
         image_width=data.W,
         image_height=data.H,
         n_pts_per_ray=2,
         min_depth=1.0,
         max_depth=2.0,
     )
     for camera in (data.camera_ndc, data.camera_screen):
         bundle = gridsampler(camera)
         self.assertTupleEqual(bundle.xys.shape,
                               (2, ) + data.image_size + (2, ))
         self.assertTupleEqual(bundle.directions.shape,
                               (2, ) + data.image_size + (3, ))
         self.assertClose(
             bundle.xys[:, data.y, data.x],
             torch.tensor(data.point[:2]).expand(2, -1),
         )
         # We check only the first batch element.
         # Second element varies because of camera location.
         self.assertClose(
             bundle.directions[0, data.y, data.x],
             torch.tensor(data.point),
         )
コード例 #2
0
ファイル: test_render_implicit.py プロジェクト: r23/pytorch3d
    def test_input_types(self):
        """
        Check that ValueErrors are thrown where expected.
        """
        # check the constructor
        for bad_raysampler in (None, 5, []):
            for bad_raymarcher in (None, 5, []):
                with self.assertRaises(ValueError):
                    ImplicitRenderer(raysampler=bad_raysampler,
                                     raymarcher=bad_raymarcher)

        # init a trivial renderer
        renderer = ImplicitRenderer(
            raysampler=NDCMultinomialRaysampler(
                image_width=100,
                image_height=100,
                n_pts_per_ray=10,
                min_depth=0.1,
                max_depth=1.0,
            ),
            raymarcher=EmissionAbsorptionRaymarcher(),
        )

        # get default cameras
        cameras = init_cameras()

        for bad_volumetric_function in (None, 5, []):
            with self.assertRaises(ValueError):
                renderer(cameras=cameras,
                         volumetric_function=bad_volumetric_function)
コード例 #3
0
    def __init__(
        self,
        n_pts_per_ray: int,
        min_depth: float,
        max_depth: float,
        n_rays_per_image: int,
        image_width: int,
        image_height: int,
        stratified: bool = False,
        stratified_test: bool = False,
    ):
        """
        Args:
            n_pts_per_ray: The number of points sampled along each ray.
            min_depth: The minimum depth of a ray-point.
            max_depth: The maximum depth of a ray-point.
            n_rays_per_image: Number of Monte Carlo ray samples when training
                (`self.training==True`).
            image_width: The horizontal size of the image grid.
            image_height: The vertical size of the image grid.
            stratified: If `True`, stratifies (=randomly offsets) the depths
                of each ray point during training (`self.training==True`).
            stratified_test: If `True`, stratifies (=randomly offsets) the depths
                of each ray point during evaluation (`self.training==False`).
        """

        super().__init__()
        self._stratified = stratified
        self._stratified_test = stratified_test

        # Initialize the grid ray sampler.
        self._grid_raysampler = NDCMultinomialRaysampler(
            image_width=image_width,
            image_height=image_height,
            n_pts_per_ray=n_pts_per_ray,
            min_depth=min_depth,
            max_depth=max_depth,
        )

        # Initialize the Monte Carlo ray sampler.
        self._mc_raysampler = MonteCarloRaysampler(
            min_x=-1.0,
            max_x=1.0,
            min_y=-1.0,
            max_y=1.0,
            n_rays_per_image=n_rays_per_image,
            n_pts_per_ray=n_pts_per_ray,
            min_depth=min_depth,
            max_depth=max_depth,
        )

        # create empty ray cache
        self._ray_cache = {}
コード例 #4
0
    def __post_init__(self):
        super().__init__()
        self.scene_center = torch.FloatTensor(self.scene_center)

        self._sampling_mode = {
            EvaluationMode.TRAINING:
            RenderSamplingMode(self.sampling_mode_training),
            EvaluationMode.EVALUATION:
            RenderSamplingMode(self.sampling_mode_evaluation),
        }

        self._raysamplers = {
            EvaluationMode.TRAINING:
            NDCMultinomialRaysampler(
                image_width=self.image_width,
                image_height=self.image_height,
                n_pts_per_ray=self.n_pts_per_ray_training,
                min_depth=self.min_depth,
                max_depth=self.max_depth,
                n_rays_per_image=self.n_rays_per_image_sampled_from_mask
                if self._sampling_mode[EvaluationMode.TRAINING]
                == RenderSamplingMode.MASK_SAMPLE else None,
                unit_directions=True,
                stratified_sampling=self.stratified_point_sampling_training,
            ),
            EvaluationMode.EVALUATION:
            NDCMultinomialRaysampler(
                image_width=self.image_width,
                image_height=self.image_height,
                n_pts_per_ray=self.n_pts_per_ray_evaluation,
                min_depth=self.min_depth,
                max_depth=self.max_depth,
                n_rays_per_image=self.n_rays_per_image_sampled_from_mask
                if self._sampling_mode[EvaluationMode.EVALUATION]
                == RenderSamplingMode.MASK_SAMPLE else None,
                unit_directions=True,
                stratified_sampling=self.stratified_point_sampling_evaluation,
            ),
        }
コード例 #5
0
def get_rgbd_point_cloud(
    camera: CamerasBase,
    image_rgb: torch.Tensor,
    depth_map: torch.Tensor,
    mask: Optional[torch.Tensor] = None,
    mask_thr: float = 0.5,
    mask_points: bool = True,
) -> Pointclouds:
    """
    Given a batch of images, depths, masks and cameras, generate a colored
    point cloud by unprojecting depth maps to the  and coloring with the source
    pixel colors.
    """
    imh, imw = image_rgb.shape[2:]

    # convert the depth maps to point clouds using the grid ray sampler
    pts_3d = ray_bundle_to_ray_points(
        NDCMultinomialRaysampler(
            image_width=imw,
            image_height=imh,
            n_pts_per_ray=1,
            min_depth=1.0,
            max_depth=1.0,
        )(camera)._replace(lengths=depth_map[:, 0, ..., None])
    )

    pts_mask = depth_map > 0.0
    if mask is not None:
        pts_mask *= mask > mask_thr
    pts_mask = pts_mask.reshape(-1)

    pts_3d = pts_3d.reshape(-1, 3)[pts_mask]

    pts_colors = torch.nn.functional.interpolate(
        image_rgb,
        # pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
        #  `List[typing.Any]`.
        size=[imh, imw],
        mode="bilinear",
        align_corners=False,
    )
    pts_colors = pts_colors.permute(0, 2, 3, 1).reshape(-1, 3)[pts_mask]

    return Pointclouds(points=pts_3d[None], features=pts_colors[None])
コード例 #6
0
ファイル: test_render_implicit.py プロジェクト: r23/pytorch3d
    def _compare_with_meshes_renderer(self,
                                      image_size,
                                      batch_size=11,
                                      sphere_diameter=0.6):
        """
        Generate a spherical RGB volumetric function and its corresponding mesh
        and check whether MeshesRenderer returns the same images as the
        corresponding ImplicitRenderer.
        """

        # generate NDC camera extrinsics and intrinsics
        cameras = init_cameras(batch_size, image_size=image_size, ndc=True)

        # get rand offset of the volume
        sphere_centroid = torch.randn(batch_size, 3,
                                      device=cameras.device) * 0.1
        sphere_centroid.requires_grad = True

        # init the grid raysampler with the ndc grid
        raysampler = NDCMultinomialRaysampler(
            image_width=image_size[1],
            image_height=image_size[0],
            n_pts_per_ray=256,
            min_depth=0.1,
            max_depth=2.0,
        )

        # get the EA raymarcher
        raymarcher = EmissionAbsorptionRaymarcher()

        # jitter the camera intrinsics a bit for each render
        cameras_randomized = cameras.clone()
        cameras_randomized.principal_point = (
            torch.randn_like(cameras.principal_point) * 0.3)
        cameras_randomized.focal_length = (
            cameras.focal_length +
            torch.randn_like(cameras.focal_length) * 0.2)

        # the list of differentiable camera vars
        cam_vars = ("R", "T", "focal_length", "principal_point")
        # enable the gradient caching for the camera variables
        for cam_var in cam_vars:
            getattr(cameras_randomized, cam_var).requires_grad = True

        # get the implicit renderer
        images_opacities = ImplicitRenderer(
            raysampler=raysampler, raymarcher=raymarcher)(
                cameras=cameras_randomized,
                volumetric_function=spherical_volumetric_function,
                sphere_centroid=sphere_centroid,
                sphere_diameter=sphere_diameter,
            )[0]

        # check that the renderer does not erase gradients
        loss = images_opacities.sum()
        loss.backward()
        for check_var in (
                *[
                    getattr(cameras_randomized, cam_var)
                    for cam_var in cam_vars
                ],
                sphere_centroid,
        ):
            self.assertIsNotNone(check_var.grad)

        # instantiate the corresponding spherical mesh
        ico = ico_sphere(level=4, device=cameras.device).extend(batch_size)
        verts = (torch.nn.functional.normalize(ico.verts_padded(), dim=-1) *
                 sphere_diameter + sphere_centroid[:, None])
        meshes = Meshes(
            verts=verts,
            faces=ico.faces_padded(),
            textures=TexturesVertex(verts_features=(
                torch.nn.functional.normalize(verts, dim=-1) * 0.5 + 0.5)),
        )

        # instantiate the corresponding mesh renderer
        lights = PointLights(device=cameras.device, location=[[0.0, 0.0, 0.0]])
        renderer_textured = MeshRenderer(
            rasterizer=MeshRasterizer(
                cameras=cameras_randomized,
                raster_settings=RasterizationSettings(
                    image_size=image_size,
                    blur_radius=1e-3,
                    faces_per_pixel=10,
                    z_clip_value=None,
                    perspective_correct=False,
                ),
            ),
            shader=SoftPhongShader(
                device=cameras.device,
                cameras=cameras_randomized,
                lights=lights,
                materials=Materials(
                    ambient_color=((2.0, 2.0, 2.0), ),
                    diffuse_color=((0.0, 0.0, 0.0), ),
                    specular_color=((0.0, 0.0, 0.0), ),
                    shininess=64,
                    device=cameras.device,
                ),
                blend_params=BlendParams(sigma=1e-3,
                                         gamma=1e-4,
                                         background_color=(0.0, 0.0, 0.0)),
            ),
        )

        # get the mesh render
        images_opacities_meshes = renderer_textured(meshes,
                                                    cameras=cameras_randomized,
                                                    lights=lights)

        if DEBUG:
            outdir = tempfile.gettempdir() + "/test_implicit_vs_mesh_renderer"
            os.makedirs(outdir, exist_ok=True)

            frames = []
            for (image_opacity,
                 image_opacity_mesh) in zip(images_opacities,
                                            images_opacities_meshes):
                image, opacity = image_opacity.split([3, 1], dim=-1)
                image_mesh, opacity_mesh = image_opacity_mesh.split([3, 1],
                                                                    dim=-1)
                diff_image = (((image - image_mesh) * 0.5 + 0.5).mean(
                    dim=2, keepdim=True).repeat(1, 1, 3))
                image_pil = Image.fromarray((torch.cat(
                    (
                        image,
                        image_mesh,
                        diff_image,
                        opacity.repeat(1, 1, 3),
                        opacity_mesh.repeat(1, 1, 3),
                    ),
                    dim=1,
                ).detach().cpu().numpy() * 255.0).astype(np.uint8))
                frames.append(image_pil)

            # export gif
            outfile = os.path.join(outdir, "implicit_vs_mesh_render.gif")
            frames[0].save(
                outfile,
                save_all=True,
                append_images=frames[1:],
                duration=batch_size // 15,
                loop=0,
            )
            print(f"exported {outfile}")

            # export concatenated frames
            outfile_cat = os.path.join(outdir, "implicit_vs_mesh_render.png")
            Image.fromarray(
                np.concatenate([np.array(f) for f in frames],
                               axis=0)).save(outfile_cat)
            print(f"exported {outfile_cat}")

        # compare the renders
        diff = (images_opacities - images_opacities_meshes).abs().mean(dim=-1)
        mu_diff = diff.mean(dim=(1, 2))
        std_diff = diff.std(dim=(1, 2))
        self.assertClose(mu_diff, torch.zeros_like(mu_diff), atol=5e-2)
        self.assertClose(std_diff, torch.zeros_like(std_diff), atol=6e-2)
コード例 #7
0
    def test_compare_with_pointclouds_renderer(self,
                                               batch_size=11,
                                               volume_size=(30, 30, 30),
                                               image_size=(200, 250)):
        """
        Generate a volume and its corresponding point cloud and check whether
        PointsRenderer returns the same images as the corresponding VolumeRenderer.
        """

        # generate NDC camera extrinsics and intrinsics
        cameras = init_cameras(batch_size, image_size=image_size, ndc=True)

        # init the boundary volume
        for shape in ("sphere", "cube"):

            if not DEBUG and shape == "cube":
                # do not run numeric checks for the cube as the
                # differences in rendering equations make the renders incomparable
                continue

            # get rand offset of the volume
            volume_translation = torch.randn(batch_size, 3) * 0.1
            # volume_translation[2] = 0.1
            volumes = init_boundary_volume(
                volume_size=volume_size,
                batch_size=batch_size,
                shape=shape,
                volume_translation=volume_translation,
            )[0]

            # convert the volumes to a pointcloud
            points = []
            points_features = []
            for densities_one, features_one, grid_one in zip(
                    volumes.densities(),
                    volumes.features(),
                    volumes.get_coord_grid(world_coordinates=True),
            ):
                opaque = densities_one.view(-1) > 1e-4
                points.append(grid_one.view(-1, 3)[opaque])
                points_features.append(features_one.reshape(3, -1).t()[opaque])
            pointclouds = Pointclouds(points, features=points_features)

            # init the grid raysampler with the ndc grid
            coord_range = 1.0
            half_pix_size = coord_range / max(*image_size)
            raysampler = NDCMultinomialRaysampler(
                image_width=image_size[1],
                image_height=image_size[0],
                n_pts_per_ray=256,
                min_depth=0.1,
                max_depth=2.0,
            )

            # get the EA raymarcher
            raymarcher = EmissionAbsorptionRaymarcher()

            # jitter the camera intrinsics a bit for each render
            cameras_randomized = cameras.clone()
            cameras_randomized.principal_point = (
                torch.randn_like(cameras.principal_point) * 0.3)
            cameras_randomized.focal_length = (
                cameras.focal_length +
                torch.randn_like(cameras.focal_length) * 0.2)

            # get the volumetric render
            images = VolumeRenderer(raysampler=raysampler,
                                    raymarcher=raymarcher,
                                    sample_mode="bilinear")(
                                        cameras=cameras_randomized,
                                        volumes=volumes)[0][..., :3]

            # instantiate the points renderer
            point_radius = 6 * half_pix_size
            points_renderer = PointsRenderer(
                rasterizer=PointsRasterizer(
                    cameras=cameras_randomized,
                    raster_settings=PointsRasterizationSettings(
                        image_size=image_size,
                        radius=point_radius,
                        points_per_pixel=10),
                ),
                compositor=AlphaCompositor(),
            )

            # get the point render
            images_pts = points_renderer(pointclouds)

            if shape == "sphere":
                diff = (images - images_pts).abs().mean(dim=-1)
                mu_diff = diff.mean(dim=(1, 2))
                std_diff = diff.std(dim=(1, 2))
                self.assertClose(mu_diff, torch.zeros_like(mu_diff), atol=3e-2)
                self.assertClose(std_diff,
                                 torch.zeros_like(std_diff),
                                 atol=6e-2)

            if DEBUG:
                outdir = tempfile.gettempdir() + "/test_volume_vs_pts_renderer"
                os.makedirs(outdir, exist_ok=True)

                frames = []
                for (image, image_pts) in zip(images, images_pts):
                    diff_image = (((image - image_pts) * 0.5 + 0.5).mean(
                        dim=2, keepdim=True).repeat(1, 1, 3))
                    image_pil = Image.fromarray(
                        (torch.cat((image, image_pts, diff_image),
                                   dim=1).detach().cpu().numpy() *
                         255.0).astype(np.uint8))
                    frames.append(image_pil)

                # export gif
                outfile = os.path.join(outdir,
                                       f"volume_vs_pts_render_{shape}.gif")
                frames[0].save(
                    outfile,
                    save_all=True,
                    append_images=frames[1:],
                    duration=batch_size // 15,
                    loop=0,
                )
                print(f"exported {outfile}")

                # export concatenated frames
                outfile_cat = os.path.join(
                    outdir, f"volume_vs_pts_render_{shape}.png")
                Image.fromarray(
                    np.concatenate([np.array(f) for f in frames],
                                   axis=0)).save(outfile_cat)
                print(f"exported {outfile_cat}")
コード例 #8
0
    def test_input_types(self, batch_size: int = 10):
        """
        Check that ValueErrors are thrown where expected.
        """
        # check the constructor
        for bad_raysampler in (None, 5, []):
            for bad_raymarcher in (None, 5, []):
                with self.assertRaises(ValueError):
                    VolumeRenderer(raysampler=bad_raysampler,
                                   raymarcher=bad_raymarcher)

        raysampler = NDCMultinomialRaysampler(
            image_width=100,
            image_height=100,
            n_pts_per_ray=10,
            min_depth=0.1,
            max_depth=1.0,
        )

        # init a trivial renderer
        renderer = VolumeRenderer(raysampler=raysampler,
                                  raymarcher=EmissionAbsorptionRaymarcher())

        # get cameras
        cameras = init_cameras(batch_size=batch_size)

        # get volumes
        volumes = init_boundary_volume(volume_size=(10, 10, 10),
                                       batch_size=batch_size)[0]

        # different batch sizes for cameras / volumes
        with self.assertRaises(ValueError):
            renderer(cameras=cameras, volumes=volumes[:-1])

        # ray checks for VolumeSampler
        volume_sampler = VolumeSampler(volumes=volumes)
        n_rays = 100
        for bad_ray_bundle in (
            (
                torch.rand(batch_size, n_rays, 3),
                torch.rand(batch_size, n_rays + 1, 3),
                torch.rand(batch_size, n_rays, 10),
            ),
            (
                torch.rand(batch_size + 1, n_rays, 3),
                torch.rand(batch_size, n_rays, 3),
                torch.rand(batch_size, n_rays, 10),
            ),
            (
                torch.rand(batch_size, n_rays, 3),
                torch.rand(batch_size, n_rays, 2),
                torch.rand(batch_size, n_rays, 10),
            ),
            (
                torch.rand(batch_size, n_rays, 3),
                torch.rand(batch_size, n_rays, 3),
                torch.rand(batch_size, n_rays),
            ),
        ):
            ray_bundle = RayBundle(
                **dict(
                    zip(
                        ("origins", "directions", "lengths"),
                        [r.to(cameras.device) for r in bad_ray_bundle],
                    )),
                xys=None,
            )
            with self.assertRaises(ValueError):
                volume_sampler(ray_bundle)

            # check also explicitly the ray bundle validation function
            with self.assertRaises(ValueError):
                _validate_ray_bundle_variables(*bad_ray_bundle)