_IS_WINDOWS = platform.system() == "Windows" _TORCH_LOWER_EQUAL_1_4 = _compare_version("torch", operator.le, "1.5.0") _TORCH_GREATER_EQUAL_1_6 = _compare_version("torch", operator.ge, "1.6.0") _TORCH_GREATER_EQUAL_1_7 = _compare_version("torch", operator.ge, "1.7.0") _TORCH_QUANTIZE_AVAILABLE = bool( [eg for eg in torch.backends.quantized.supported_engines if eg != 'none']) _APEX_AVAILABLE = _module_available("apex.amp") _BOLTS_AVAILABLE = _module_available('pl_bolts') _DEEPSPEED_AVAILABLE = not _IS_WINDOWS and _module_available('deepspeed') _FAIRSCALE_AVAILABLE = not _IS_WINDOWS and _module_available( 'fairscale.nn.data_parallel') _FAIRSCALE_PIPE_AVAILABLE = _TORCH_GREATER_EQUAL_1_6 and _compare_version( "fairscale", operator.le, "0.1.3") _GROUP_AVAILABLE = not _IS_WINDOWS and _module_available( 'torch.distributed.group') _HOROVOD_AVAILABLE = _module_available("horovod.torch") _HYDRA_AVAILABLE = _module_available("hydra") _HYDRA_EXPERIMENTAL_AVAILABLE = _module_available("hydra.experimental") _NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr( torch.cuda.amp, "autocast") _OMEGACONF_AVAILABLE = _module_available("omegaconf") _RPC_AVAILABLE = not _IS_WINDOWS and _module_available('torch.distributed.rpc') _TORCHTEXT_AVAILABLE = _module_available("torchtext") _TORCHVISION_AVAILABLE = _module_available('torchvision') _XLA_AVAILABLE = _module_available("torch_xla") from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: E402 _TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities.xla_device import XLADeviceUtils from tests.helpers.boring_model import BoringModel from tests.helpers.utils import pl_multi_process_test @pytest.mark.skipif(not XLADeviceUtils.tpu_device_exists(), reason="test requires TPU machine") @pl_multi_process_test def test_resume_training_on_cpu(tmpdir): """ Checks if training can be resumed from a saved checkpoint on CPU""" # Train a model on TPU model = BoringModel() trainer = Trainer( checkpoint_callback=True, max_epochs=1, tpu_cores=8, ) trainer.fit(model) model_path = trainer.checkpoint_callback.best_model_path