コード例 #1
0
def worker(input_file, output_file):
    points = load(input_file)
    labels = points[:, -1]
    save_ply_property(points[:, :3],
                      labels,
                      output_file,
                      normals=points[:, 3:6])
コード例 #2
0
ファイル: common.py プロジェクト: ml-lab/deep_cage
def log_outputs(opt, step, all_outputs, all_inputs):
    # Source
    color = all_inputs["source_shape"][:,:,1].cpu().numpy()
    save_ply_property(os.path.join(opt.log_dir,"step-{:06d}-Sa.ply".format(step)), all_inputs["source_shape"][0].detach().cpu().numpy(), color[0], cmap_name="rainbow")
    # Target
    save_ply_property(os.path.join(opt.log_dir,"step-{:06d}-Sb.ply".format(step)), all_inputs["target_shape"][0].detach().cpu().numpy(), color[0], cmap_name="rainbow")
    for batch in range(0, all_outputs["cage"].shape[0], opt.batch_size):
        if batch // opt.batch_size == 0:
            tag = "StoT"
        elif batch // opt.batch_size == 2:
            tag = "StoS"
        elif batch // opt.batch_size == 1:
            tag = "TtoS"
        elif batch // opt.batch_size == 3:
            tag = "TtoT"

        # deformed and cage
        save_ply_property(os.path.join(opt.log_dir,"step-{:06d}-{}-Sab.ply".format(step, tag)),
                    all_outputs["deformed"][batch].detach().cpu().numpy(), color[batch], cmap_name="rainbow")
        write_trimesh(os.path.join(opt.log_dir, "step-{:06d}-{}-cage1.ply".format(step, tag)),
                    all_outputs["cage"][batch].detach().cpu(), all_outputs["cage_face"][0].detach().cpu(), binary=True)
        write_trimesh(os.path.join(opt.log_dir, "step-{:06d}-{}-cage2.ply".format(step, tag)),
                    all_outputs["new_cage"][batch].detach().cpu(), all_outputs["cage_face"][0].detach().cpu(), binary=True)

        # if using network2
        if "cage_surface" in all_outputs:
            save_ply(os.path.join(opt.log_dir,"step-{:06d}-{}-cage_surface1.ply".format(step, tag)), all_outputs["cage_surface"][batch].detach().cpu().numpy())
            save_ply(os.path.join(opt.log_dir,"step-{:06d}-{}-cage_surface2.ply".format(step, tag)), all_outputs["new_cage_surface"][batch].detach().cpu().numpy())
コード例 #3
0
            pred = torch.from_numpy(pred).cuda()
            gt = torch.from_numpy(gt).cuda()

            pred_tensor, centroid, furthest_distance = normalize_point_batch(pred)
            gt_tensor, centroid, furthest_distance = normalize_point_batch(gt)

            # B, P_predict, 1
            cd_forward, cd_backward = nndistance(pred, gt)
            # cd_forward, _ = knn_point(1, gt_tensor, pred_tensor)
            # cd_backward, _ = knn_point(1, pred_tensor, gt_tensor)
            # cd_forward = cd_forward[0, :, 0]
            # cd_backward = cd_backward[0, :, 0]
            cd_forward = cd_forward.detach().cpu().numpy()[0]
            cd_backward = cd_backward.detach().cpu().numpy()[0]

            save_ply_property(pred.squeeze(0).detach().cpu().numpy(), cd_forward, pred_path[:-4]+"_cdF.ply", property_max=0.003, cmap_name="jet")
            save_ply_property(gt.squeeze(0).detach().cpu().numpy(), cd_backward, pred_path[:-4]+"_cdB.ply", property_max=0.003, cmap_name="jet")

            md_value = np.mean(cd_forward)+np.mean(cd_backward)
            hd_value = np.max(np.amax(cd_forward, axis=0)+np.amax(cd_backward, axis=0))
            cd_backward = np.mean(cd_backward)
            cd_forward = np.mean(cd_forward)
            # row["CD_forward"] = np.mean(cd_forward)
            # row["CD_backwar"] = np.mean(cd_backward)
            row["CD"] = cd_forward+cd_backward

            row["hausdorff"] = hd_value
            avg_md_forward_value += cd_forward
            avg_md_backward_value += cd_backward
            avg_hd_value += hd_value
            if os.path.isfile(pred_path[:-4] + "_point2mesh_distance.xyz"):
コード例 #4
0
ファイル: finetune_shape.py プロジェクト: zuru/DSS
def trainShapeOnImage(scene, refScene, opt, baseline=False, benchmark=False):
    expr_dir = os.path.join(opt.output, opt.name)
    if not os.path.isdir(expr_dir):
        os.makedirs(expr_dir)

    trainer = Trainer(opt, scene)
    trainer.setup(opt, scene.cloud)

    logInterval = (1+sum(opt.steps))//20
    renderForwardTime = 0.0
    lossTime = 0.0
    optimizerStep = 0.0

    with open(os.path.join(expr_dir, "loss.csv"), 'w') as loss_log:
        learnTick = time.time()
        for c in range(opt.cycles):
            # creat new reference
            tb = c*sum(opt.steps)+opt.startingStep
            te = (c+1)*sum(opt.steps)+opt.startingStep
            t = tb

            with torch.no_grad():
                # render reference
                trainer.create_reference(refScene)

                # render prediction
                maxDiffs = []
                selectedCameras = []
                for i in range(len(refScene.cameras)):
                    trainer.forward(i)
                    prediction = trainer.predictions[i]
                    maxDiff, selectedCamera = viewFromError(opt.genCamera, trainer.groundtruths[i][0], prediction.detach()[0],
                                                            trainer.model._localPoints.detach(), trainer.model._projPoints.detach(),
                                                            trainer.model,
                                                            offset=opt.camOffset*(0.997**c))
                    maxDiffs.append(maxDiff)
                    selectedCameras.append(selectedCamera)

                maxId = torch.stack(maxDiffs, dim=0).argmax()
                selectedCamera = selectedCameras[maxId]
                # render again
                trainer.create_reference(refScene, selectedCamera)
                writeScene(refScene, os.path.join(expr_dir, 't%03d_scene_gt.json' % t))
                writeCameras(refScene, os.path.join(expr_dir, 't%03d_cameras.ply' % t))
                for i, gt in enumerate(trainer.groundtruths):
                    if gt is not None:
                        saveAsPng(gt.cpu()[0], os.path.join(expr_dir, 't%03d_cam%d_gt.png' % (t, i)))
                trainer.initiate_cycle()

            for t in range(tb, te):
                if t % logInterval == 0 and not benchmark:
                    writeScene(scene, os.path.join(expr_dir, 't%03d_scene.json' % t), os.path.join(expr_dir, "t%03d.ply" % t))

                trainer.optimize_parameters()

                if t % logInterval == 0 and not benchmark:
                    for i, prediction in enumerate(trainer.predictions):
                        saveAsPng(prediction.detach().cpu()[0], os.path.join(expr_dir, 't%03d_cam%d' % (t, i) + ".png"))

                if not benchmark:
                    loss_str = ",".join(["%.3f" % v for v in trainer.loss_image])
                    reg_str = ",".join(["%.3f" % v for v in trainer.loss_reg])
                    entries = [trainer.modifier] + [loss_str] + [reg_str]
                    loss_log.write(",".join(entries)+"\n")
                    print("{:03d} {}: lr {} loss ({}) \n         :       reg ({})".format(
                        t, trainer.modifier, trainer.lr, loss_str, reg_str))

            trainer.finish_cycle()

    # outlier removal
    with torch.no_grad():
        # re-project
        scores = []
        for i, gt in enumerate(trainer.groundtruths):
            if gt is None:
                continue
            trainer.model.setCamera(i)
            trainer.model.convertToCameraSpace()
            projectedPoints = trainer.model.camera.projectPoints(trainer.model.cameraPoints)
            score = removeOutlier(gt, projectedPoints, sigma=100)

            saveAsPng(gt.cpu()[0], os.path.join(expr_dir, 'clean_gt_cam%d.png' % i))
            save_ply_property(trainer.model.localPoints.cpu()[0].detach(), 1-score.cpu(), os.path.join(expr_dir, 'clean_score_cam % d.ply' % i), property_max=1,
                              normals=trainer.model.localNormals.detach().cpu()[0], cmap_name="gnuplot2")
            rendered = trainer.model.render()[0]
            saveAsPng(rendered.cpu(), os.path.join(expr_dir, 'clean_pred_cam%d.png' % i))
            scores.append(score)

        scores = torch.stack(scores, dim=0)
        scores = torch.prod(scores, dim=0)
        _, indices = torch.topk(scores, int(trainer.model.localPoints.shape[1]*0.99), dim=0)
        # _, indices = torch.topk(score, int(trainer.model.localPoints.shape[1]*0.99), dim=0)
        newPoints = torch.index_select(trainer.model.localPoints.data, 1, indices)
        newNormals = torch.index_select(trainer.model.localNormals.data, 1, indices)
        newColors = torch.index_select(trainer.model.pointColors.data, 1, indices)

        scene.cloud.localPoints = newPoints[0]
        scene.cloud.localNormals = newNormals[0]
        scene.cloud.color = newColors[0]

    writeScene(scene, os.path.join(expr_dir, 'final_scene.json'), os.path.join(expr_dir, 'final_cloud.ply'))