コード例 #1
0
import numpy as np
import pandas as pd
import torch
from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForTokenClassification
import json
from tqdm import tqdm
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
import os
import time

# Load pre-trained model (weights)
model = BertForTokenClassification.from_pretrained('bert-base-cased',
                                                   num_labels=3)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
# print(model)
print(tokenizer)

print("vocab_size : {}\n".format(len(tokenizer.vocab)))
print(tokenizer.convert_tokens_to_ids(['to', '[PAD]']))

df = pd.read_csv('../input/train.csv')
# print(df)
print("df key :", df.keys())

char_label_maxlen = 0
word_label_maxlen = 0
# check label length at char level
char_length_dic = {}
コード例 #2
0
train_data = TensorDataset(tr_inputs, tr_masks, tr_tags)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=bs)

valid_data = TensorDataset(val_inputs, val_masks, val_tags)
valid_sampler = SequentialSampler(valid_data)
valid_dataloader = DataLoader(valid_data, sampler=valid_sampler, batch_size=bs)






model = BertForTokenClassification.from_pretrained(
    "bert-base-cased",
    num_labels=len(tag2idx),
    output_attentions = False,
    output_hidden_states = False
)


FULL_FINETUNING = False
if FULL_FINETUNING:
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay_rate': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
         'weight_decay_rate': 0.0}
    ]
else:
コード例 #3
0
ファイル: evaluate.py プロジェクト: shinoyuki222/DemoML
    # Initialize the DataLoader
    data_loader = DataLoader(args.data_dir, args.bert_model_dir, params, token_pad_idx=0)

    # Load data
    test_data = data_loader.load_data('test')

    # Specify the test set size
    params.test_size = test_data['size']
    params.eval_steps = params.test_size // params.batch_size
    test_data_iterator = data_loader.data_iterator(test_data, shuffle=False)

    logging.info("- done.")

    # Define the model
    config_path = os.path.join(args.bert_model_dir, 'bert_config.json')
    config = BertConfig.from_json_file(config_path)
    model = BertForTokenClassification(config, num_labels=len(params.tag2idx))

    model.to(params.device)
    # Reload weights from the saved file
    utils.load_checkpoint(os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model)
    if args.fp16:
        model.half()
    if params.n_gpu > 1 and args.multi_gpu:
        model = torch.nn.DataParallel(model)

    logging.info("Starting evaluation...")
    test_metrics = evaluate(model, test_data_iterator, params, mark='Test', verbose=True)

コード例 #4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default='/home/adzuser/user_achyuta/BERT_NER_Test/BERT-NER/NERdata/',
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default='NER',
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default='ner_output',
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run test on the test set.")
    parser.add_argument("--do_pred",
                        action='store_true',
                        help="Whether to run pred on the pred set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--num_train_epochs",
        default=10.0,  #3.0,
        type=float,
        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--clip',
                        type=float,
                        default=0.5,
                        help="gradient clipping")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")

    parser.add_argument('--text_a', type=str, default='', help="input text_a.")
    parser.add_argument('--text_b', type=str, default='', help="input text_b.")

    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {"ner": NerProcessor}

    num_labels_task = {"ner": 12}

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_pred:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]
    label_list = processor.get_labels()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        #print("train_examples :: ",len(list(train_examples)))
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(
            args.local_rank))
    #imodel = BertForSequenceClassification.from_pretrained(args.bert_model,
    #          cache_dir=cache_dir,
    #          num_labels = num_labels)
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       cache_dir=cache_dir,
                                                       num_labels=num_labels)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                #print(input_ids.shape,input_mask.shape,segment_ids.shape,label_ids.shape)
                #print(input_ids[0])
                #print(label_ids[0])
                #logits = model(input_ids, segment_ids, input_mask)
                #import pdb;pdb.set_trace()
                #print(logits.view(-1, num_labels).shape, label_ids.view(-1).shape)
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                # added clip
                if args.clip is not None:
                    _ = torch.nn.utils.clip_grad_norm(model.parameters(),
                                                      args.clip)

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        #model = BertForSequenceClassification(config, num_labels=num_labels)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        #model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
        # Load a trained model and config that you have fine-tuned
        print('for eval only......................')
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = BertConfig(output_config_file)
        #model = BertForSequenceClassification(config, num_labels=num_labels)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        #import pdb;pdb.set_trace()
        #print("dev_eaxmples :: ",len(list(eval_examples)))
        eval_features = convert_examples_to_features_pred(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        predictions, true_labels = [], []
        #predictions1 , true_labels1 = [], []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            # get index till '[SEP]'
            #print("label_list index SEP : ",label_list.index('[SEP]'))
            pred_xx = [list(p) for p in np.argmax(logits, axis=2)]
            pred_xx = [i[:i.index(label_list.index('[SEP]'))] for i in pred_xx]
            label_ids_xx = [
                i[:i.index(label_list.index('[SEP]'))]
                for i in label_ids.tolist()
            ]
            #print(label_ids_xx)
            #print(pred_xx)

            # new add
            tmp_s = [
                max(len(i), len(j)) for i, j in zip(label_ids_xx, pred_xx)
            ]
            tmp_u = [(i + [31] * (k - len(i)) if len(i) != k else i,
                      j + [31] * (k - len(j)) if len(j) != k else j)
                     for i, j, k in zip(label_ids_xx, pred_xx, tmp_s)]
            tmp_d1 = [h[0] for h in tmp_u]
            tmp_d2 = [h[1] for h in tmp_u]

            #print([list(p) for p in np.argmax(logits, axis=2)][:5])
            #tmp_eval_accuracy = flat_accuracy(logits, label_ids)
            tmp_eval_accuracy = flat_accc(pred_xx, label_ids_xx)
            #tmp_eval_accuracy = flat_accc(tmp_d1, tmp_d2)
            predictions.extend(tmp_d2)
            true_labels.append(tmp_d1)
            #predictions1.extend(pred_xx)
            #true_labels1.append(label_ids_xx)

            #print("tmp accuracy : ",tmp_eval_accuracy)
            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_steps
        loss = tr_loss / nb_tr_steps if args.do_train else None

        pred_tags = [[label_list[p_i] if p_i != 31 else 'XXX' for p_i in p]
                     for p in predictions]
        valid_tags = [[
            label_list[l_ii] if l_ii != 31 else 'YYY' for l_ii in l_i
        ] for l in true_labels for l_i in l]
        print("valid_tags : ", valid_tags[:10])
        print("pred_tags : ", pred_tags[:10])
        print("Validation F1-Score: {}".format(f1_score(valid_tags,
                                                        pred_tags)))
        print("Validation accuracy_score : {}".format(
            accuracy_score(valid_tags, pred_tags)))
        print("Validation classification_report : {}".format(
            classification_report(valid_tags, pred_tags)))

        #print("X Validation F1-Score: {}".format(f1_score(true_labels1, predictions1)))
        #print("X Validation accuracy_score : {}".format(accuracy_score(true_labels1, predictions1)))
        #print("X Validation classification_report : {}".format(classification_report(true_labels1, predictions1)))

        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss
        }
        print(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(result.keys()):
                writer.write("%s = %s\n" % (key, str(result[key])))

    if args.do_test and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_test_examples(args.data_dir)
        #import pdb;pdb.set_trace()
        eval_features = convert_examples_to_features_pred(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        test_loss, test_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        predictions, true_labels = [], []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            # get index till '[SEP]'
            #print("label_list index SEP : ",label_list.index('[SEP]'))
            pred_xx = [list(p) for p in np.argmax(logits, axis=2)]
            pred_xx = [i[:i.index(label_list.index('[SEP]'))] for i in pred_xx]
            label_ids_xx = [
                i[:i.index(label_list.index('[SEP]'))]
                for i in label_ids.tolist()
            ]
            #print(label_ids_xx)
            #print(pred_xx)

            # new add
            tmp_s = [
                max(len(i), len(j)) for i, j in zip(label_ids_xx, pred_xx)
            ]
            tmp_u = [(i + [31] * (k - len(i)) if len(i) != k else i,
                      j + [31] * (k - len(j)) if len(j) != k else j)
                     for i, j, k in zip(label_ids_xx, pred_xx, tmp_s)]
            tmp_d1 = [h[0] for h in tmp_u]
            tmp_d2 = [h[1] for h in tmp_u]

            #print([list(p) for p in np.argmax(logits, axis=2)][:5])
            #tmp_eval_accuracy = flat_accuracy(logits, label_ids)
            tmp_eval_accuracy = flat_accc(pred_xx, label_ids_xx)
            #tmp_eval_accuracy = flat_accc(tmp_d1, tmp_d2)
            predictions.extend(tmp_d2)
            true_labels.append(tmp_d1)
            #print("tmp accuracy : ",tmp_eval_accuracy)
            test_loss += tmp_eval_loss.mean().item()
            test_accuracy += tmp_eval_accuracy
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        test_loss = test_loss / nb_eval_steps
        test_accuracy = test_accuracy / nb_eval_steps
        loss = tr_loss / nb_tr_steps if args.do_train else None

        pred_tags = [[label_list[p_i] if p_i != 31 else 'XXX' for p_i in p]
                     for p in predictions]
        valid_tags = [[
            label_list[l_ii] if l_ii != 31 else 'YYY' for l_ii in l_i
        ] for l in true_labels for l_i in l]
        print("valid_tags : ", valid_tags[:10])
        print("pred_tags : ", pred_tags[:10])
        print("Test F1-Score: {}".format(f1_score(valid_tags, pred_tags)))
        print("Test accuracy_score : {}".format(
            accuracy_score(valid_tags, pred_tags)))
        print("Test classification_report : {}".format(
            classification_report(valid_tags, pred_tags)))

        #print("X Test F1-Score: {}".format(f1_score(true_labels, predictions)))
        #print("X Test accuracy_score : {}".format(accuracy_score(true_labels, predictions)))
        #print("X Test classification_report : {}".format(classification_report(true_labels, predictions)))

        result = {
            'test_loss': test_loss,
            'test_accuracy': test_accuracy,
            'global_step': global_step,
            'loss': loss
        }
        print(result)
        output_test_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_test_file, "w") as writer:
            for key in sorted(result.keys()):
                writer.write("%s = %s\n" % (key, str(result[key])))

    if args.do_pred and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        #eval_examples = processor.get_dev_examples(args.data_dir)
        model.eval()
        while True:
            print(
                'Enter a text to get NER. otherwise press Ctrl+C to close session.'
            )
            text_a = input('>>>')
            #"Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C championship match on Friday . ."
            eval_examples = {
                'text_a': text_a,
                'text_b':
                "The foodservice pie business does not fit our long-term growth strategy .",
                'label': '1',
                'guid': '12345'
            }

            eval_features = convert_examples_to_features_test(
                eval_examples, label_list, args.max_seq_length, tokenizer)

            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            #model.eval()
            eval_loss, eval_accuracy = 0, 0
            nb_eval_steps, nb_eval_examples = 0, 0
            predictions, true_labels = [], []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(
                    eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                          label_ids)
                    logits = model(input_ids, segment_ids, input_mask)

                logits = logits.detach().cpu().numpy()
                label_ids = label_ids.to('cpu').numpy()

                pred_xx = [list(p) for p in np.argmax(logits, axis=2)]
                pred_xx = [
                    i[:i.index(label_list.index('[SEP]'))] for i in pred_xx
                ]

                print(pred_xx)
                print([[label_list[p_i] if p_i != 31 else 'XXX' for p_i in p]
                       for p in pred_xx])