def update_fit_params(self, X_train, y_train, eval_set, weights): output_dim, train_labels = infer_multitask_output(y_train) for _, y in eval_set: for task_idx in range(y.shape[1]): check_output_dim(train_labels[task_idx], y[:, task_idx]) self.output_dim = output_dim self.classes_ = train_labels self.target_mapper = [{ class_label: index for index, class_label in enumerate(classes) } for classes in self.classes_] self.preds_mapper = [{ index: class_label for index, class_label in enumerate(classes) } for classes in self.classes_] self.updated_weights = weights filter_weights(self.updated_weights)
def update_fit_params( self, X_train, y_train, eval_set, weights, ): output_dim, train_labels = infer_output_dim(y_train) for X, y in eval_set: check_output_dim(train_labels, y) self.output_dim = output_dim self._default_metric = ('auc' if self.output_dim == 2 else 'accuracy') self.classes_ = train_labels self.target_mapper = { class_label: index for index, class_label in enumerate(self.classes_) } self.preds_mapper = { index: class_label for index, class_label in enumerate(self.classes_) } self.updated_weights = self.weight_updater(weights)