コード例 #1
0
                                   drop_last=True)

    valid_loader = data.DataLoader(valid_dataset,
                                   batch_size=opt.batch_size,
                                   num_workers=opt.workers,
                                   pin_memory=opt.use_shared_memory)

    #
    #   Instantiate the train loop
    #
    optimizer = setup_optimizer(model, opt.optimizer, opt.learning_rate)

    train_loop_handler = TrainLoop(model,
                                   train_loader,
                                   valid_loader,
                                   optimizer,
                                   opt.backend,
                                   gradient_clip=opt.gradient_clip,
                                   use_tensorboard=opt.use_tensorboard)

    #
    #   Add callbacks
    #
    train_loop_handler.add_callback([
        IlluminationPredictorCallback(10, hdr_image_handler, ldr_image_handler,
                                      train_dataset, opt, model.ae)
    ])

    #
    #   Train the model
    #
コード例 #2
0
    #   Instantiate loaders
    #
    hdr_image_handler = HDRImageHandler(opt.mean_std,
                                        perform_scale_perturbation=False)

    test_dataset = AutoEncoderDataset(
        opt.data_path, transform=hdr_image_handler.normalization_ops)

    test_loader = data.DataLoader(test_dataset,
                                  batch_size=1,
                                  num_workers=0,
                                  pin_memory=True)

    #
    #   Instantiate the train loop
    #
    train_loop_handler = TrainLoop(model, None, test_loader, None, opt.backend)
    train_loop_handler.setup_checkpoint(opt.load_best, opt.load_last,
                                        opt.output_path, False)

    #
    #   Add callbacks
    #
    train_loop_handler.add_callback(
        [AutoEncoderCallback(10, hdr_image_handler, test_dataset, opt)])

    #
    #   Test the model
    #
    train_loop_handler.test()
コード例 #3
0
    # Setup model
    model = model_class(image_size=int(train_dataset.metadata["image_size"]))
    if finetune_path != "None":
        finetune_path = os.path.expandvars(finetune_path)
        print("Finetuning path : {}".format(finetune_path))
        checkpoint = torch.load(finetune_path,
                                map_location=lambda storage, loc: storage)
        model.load_state_dict(checkpoint['state_dict'])

    optimizer = optim.Adam(model.parameters(),
                           lr=learning_rate,
                           weight_decay=weight_decay)

    # Instantiate the train loop and train the model.
    train_loop_handler = TrainLoop(model,
                                   train_loader,
                                   val_loader,
                                   optimizer,
                                   backend,
                                   gradient_clip,
                                   use_tensorboard=use_tensorboard,
                                   tensorboard_log_path=tensorboard_path)
    train_loop_handler.add_callback(callbacks)
    print("Training Begins:")
    train_loop_handler.loop(epochs,
                            output_path,
                            load_best_checkpoint=start_from_last,
                            save_all_checkpoints=False)
    print("Training Complete")
コード例 #4
0
                                                configs=opt,
                                                transform=ldr_image_handler,
                                                dataset_purpose='test')

    test_loader = data.DataLoader(test_dataset,
                                  batch_size=1,
                                  num_workers=opt.workers,
                                  pin_memory=opt.use_shared_memory)

    #
    #   Instantiate the train loop
    #
    train_loop_handler = TrainLoop(model,
                                   None,
                                   test_loader,
                                   None,
                                   opt.backend,
                                   gradient_clip=False,
                                   use_tensorboard=False)
    train_loop_handler.setup_checkpoint(opt.load_best, opt.load_last,
                                        opt.model_path, False)

    #
    #   Add callbacks
    #
    train_loop_handler.add_callback([
        IlluminationPredictorCallback(1,
                                      hdr_image_handler,
                                      ldr_image_handler,
                                      test_dataset,
                                      opt,