コード例 #1
0
ファイル: biencoder.py プロジェクト: mwei97/END2END_EL
 def __init__(self, params, shared=None):
     super(BiEncoderRanker, self).__init__()
     self.params = params
     self.device = torch.device("cuda" if torch.cuda.is_available()
                                and not params["no_cuda"] else "cpu")
     self.n_gpu = torch.cuda.device_count()
     # init tokenizer
     self.NULL_IDX = 0
     self.START_TOKEN = "[CLS]"
     self.END_TOKEN = "[SEP]"
     self.tokenizer = BertTokenizer.from_pretrained(
         params["bert_model"], do_lower_case=params["lowercase"])
     # init model
     self.build_model()
     model_path = params.get("path_to_model", None)
     if model_path is not None:
         self.load_model(
             model_path,
             cand_enc_only=params.get("load_cand_enc_only", False),
         )
     self.model = self.model.to(self.device)
     # todo
     self.data_parallel = params.get("data_parallel")
     if self.data_parallel:
         self.model = torch.nn.DataParallel(self.model)
コード例 #2
0
    def __init__(self, args):
        torch.manual_seed(args.seed)
        self.args = args

        # Tokenizer, Generator, Discriminator
        if args.load_epoch > -1:  # NOTE: 0-indexed. Load from trained
            gen_path, dis_path = get_gan_path(self.args.model_out,
                                              self.args.load_epoch)
        else:
            gen_path, dis_path = args.bert_model, args.bert_model
        self.tokenizer = BertTokenizer.from_pretrained(
            gen_path)  # TODO requires_grad = False?
        self.generator = BertForMaskedLM.from_pretrained(gen_path)
        self.discriminator = BertForSequenceClassification.from_pretrained(
            dis_path, num_labels=self.args.num_labels)

        # Optimizer
        self.optimizerG = self._get_optimizer_(self.generator)
        self.optimizerD = self._get_optimizer_(self.discriminator)

        # DataLoader
        self.msk_data = load_data(args.data_in, args.maxlen, args.batch_size,
                                  self.tokenizer, args.seed, 'masked')
        self.org_data = load_data(args.data_in, args.maxlen, args.batch_size,
                                  self.tokenizer, args.seed, 'original')

        self.mask_id = self.tokenizer.convert_tokens_to_ids(['[MASK]'])[0]
        self.device = torch.device("cuda:0" if args.cuda else "cpu")
        self.generator.to(self.device)
        self.discriminator.to(self.device)
コード例 #3
0
def main(args):
    print(f"\nmain({args})\n")
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    vocab_list = list(tokenizer.vocab.keys())
    if args.rand_mask > 0:
        fin_name = 'general_in_rand_mask.txt'  
        args.output_dir = args.output_dir / 'rand_mask_bert_pregen'
    else:
        fin_name = 'general_in_lcs.txt'
        args.output_dir = args.output_dir / 'lcs_bert_pregen'

    with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
        with open(os.path.join(args.data_path,fin_name)) as f:
            for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
                # mwp_ans is a list of tuples ('hello [MASK] ! [SEP] how are you ? [SEP]', 'world')
                mwp, ans = line[6:].strip().split('$$$')   # [6:] to avoid "[CLS] "
                sents = mwp.split(' [SEP]')[:-1]
                ans = ans.split()
                ans = [[ans.pop(0) for _ in range(s.count('[MASK]'))] for s in sents]
                #docs.add_document(list(zip([tokenizer.tokenize(s) for s in sents], ans)))
                docs.add_document(list(zip([s.split() for s in sents], ans))) # It's bert-tokenized in make_data
        assert len(docs) > 1
        args.output_dir.mkdir(exist_ok=True)
        for epoch in range(args.epochs_to_generate):
            my_create_training_file(docs, vocab_list, args, epoch)
コード例 #4
0
def load_datasets(task_cfg, splits):
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",
                                              do_lower_case=True)
    loaders = {}
    for split in splits:
        loaders[split] = get_loader(task_cfg, tokenizer, split)
    return loaders
コード例 #5
0
ファイル: crossencoder.py プロジェクト: dhdhagar/BLINK
    def __init__(self, params, shared=None):
        super(CrossEncoderRanker, self).__init__()
        self.params = params
        self.device = torch.device("cuda" if torch.cuda.is_available()
                                   and not params["no_cuda"] else "cpu")
        self.n_gpu = torch.cuda.device_count()

        if params.get("roberta"):
            self.tokenizer = RobertaTokenizer.from_pretrained(
                params["bert_model"], )
        else:
            self.tokenizer = BertTokenizer.from_pretrained(
                params["bert_model"], do_lower_case=params["lowercase"])

        special_tokens_dict = {
            "additional_special_tokens": [
                ENT_START_TAG,
                ENT_END_TAG,
                ENT_TITLE_TAG,
            ],
        }
        self.tokenizer.add_special_tokens(special_tokens_dict)
        self.NULL_IDX = self.tokenizer.pad_token_id
        self.START_TOKEN = self.tokenizer.cls_token
        self.END_TOKEN = self.tokenizer.sep_token

        # init model
        self.build_model()
        if params["path_to_model"] is not None:
            self.load_model(params["path_to_model"])

        self.model = self.model.to(self.device)
        self.data_parallel = params.get("data_parallel")
        if self.data_parallel:
            self.model = torch.nn.DataParallel(self.model)
コード例 #6
0
def load_dataset(task_cfg, split):
    assert (split == "eval")
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",
                                              do_lower_case=True)
    loaders = {}
    loaders[split] = get_loader(task_cfg, tokenizer, split)
    return loaders
コード例 #7
0
    def __init__(self,args=None,
                 labels=None,
                 device='cuda',
                 bert_model_path='bert-base-uncased',
                 architecture="DocumentBertLSTM",
                 batch_size=10,
                 bert_batch_size=7,
                 learning_rate = 5e-5,
                 weight_decay=0,
                 use_tensorboard=False):
        if args is not None:
            self.args = vars(args)
        if not args:
            self.args = {}
            self.args['bert_model_path'] = bert_model_path
            self.args['device'] = device
            self.args['learning_rate'] = learning_rate
            self.args['weight_decay'] = weight_decay
            self.args['batch_size'] = batch_size
            self.args['labels'] = labels
            self.args['bert_batch_size'] = bert_batch_size
            self.args['architecture'] = architecture
            self.args['use_tensorboard'] = use_tensorboard
        if 'fold' not in self.args:
            self.args['fold'] = 0

        assert self.args['labels'] is not None, "Must specify all labels in prediction"

        self.log = logging.getLogger()
        self.bert_tokenizer = BertTokenizer.from_pretrained(self.args['bert_model_path'])


        #account for some random tensorflow naming scheme
        if os.path.exists(self.args['bert_model_path']):
            if os.path.exists(os.path.join(self.args['bert_model_path'], CONFIG_NAME)):
                config = BertConfig.from_json_file(os.path.join(self.args['bert_model_path'], CONFIG_NAME))
            elif os.path.exists(os.path.join(self.args['bert_model_path'], 'bert_config.json')):
                config = BertConfig.from_json_file(os.path.join(self.args['bert_model_path'], 'bert_config.json'))
            else:
                raise ValueError("Cannot find a configuration for the BERT based model you are attempting to load.")
        else:
            config = BertConfig.from_pretrained(self.args['bert_model_path'])
        config.__setattr__('num_labels',len(self.args['labels']))
        config.__setattr__('bert_batch_size',self.args['bert_batch_size'])

        if 'use_tensorboard' in self.args and self.args['use_tensorboard']:
            assert 'model_directory' in self.args is not None, "Must have a logging and checkpoint directory set."
            from torch.utils.tensorboard import SummaryWriter
            self.tensorboard_writer = SummaryWriter(os.path.join(self.args['model_directory'],
                                                                 "..",
                                                                 "runs",
                                                                 self.args['model_directory'].split(os.path.sep)[-1]+'_'+self.args['architecture']+'_'+str(self.args['fold'])))


        self.bert_doc_classification = document_bert_architectures[self.args['architecture']].from_pretrained(self.args['bert_model_path'], config=config)
        self.optimizer = torch.optim.Adam(
            self.bert_doc_classification.parameters(),
            weight_decay=self.args['weight_decay'],
            lr=self.args['learning_rate']
        )
コード例 #8
0
ファイル: main7.py プロジェクト: cytsinghua/TextClassify
    def __init__(self, debug, args, data_dir, data_process_output):

        self.eval_steps = args.eval_steps
        self.adam_epsilon = args.adam_epsilon
        self.warmup_steps = args.warmup_steps
        self.learning_rate = args.learning_rate
        self.weight_decay = args.weight_decay
        self.gradient_accumulation_steps = args.gradient_accumulation_steps
        self.device = torch.device('cuda')
        self.debug = debug
        self.seed = 2019
        self.args = args
        self.data_dir = args.data_dir
        self.max_seq_length = args.max_seq_length
        self.batch_size = args.per_gpu_train_batch_size
        self.train_steps = args.train_steps
        self.tokenizer = BertTokenizer.from_pretrained(
            args.model_name_or_path, do_lower_case=args.do_lower_case)
        self.config = BertConfig.from_pretrained(args.model_name_or_path,
                                                 num_labels=3)
        self.seed_everything()
        self.do_eval = True

        self.data_dir = data_dir
        self.data_process_output = data_process_output
        self.output_dir = './'
コード例 #9
0
 def __init__(self):
     self.model_path = 'output/model'
     #self.processor = ATEPCProcessor()
     #self.labels = self.processor.get_labels()
     #self.n_class = len(self.labels)
     self.tokenizer = BertTokenizer.from_pretrained('./output/model/vocab.txt')
     self.device = torch.device("cuda:5" if torch.cuda.is_available() else 'cpu')
コード例 #10
0
    def __init__(self, params, shared=None):
        super(BiEncoderRanker, self).__init__()
        self.params = params
        self.device = torch.device("cuda" if torch.cuda.is_available()
                                   and not params["no_cuda"] else "cpu")
        self.n_gpu = torch.cuda.device_count()

        # init tokenizer
        self.NULL_IDX = 0
        self.START_TOKEN = "[CLS]"
        self.END_TOKEN = "[SEP]"
        vocab_path = os.path.join(params["bert_model"], 'vocab.txt')
        if os.path.isfile(vocab_path):
            print(f"Found tokenizer vocabulary at {vocab_path}")
        self.tokenizer = BertTokenizer.from_pretrained(
            vocab_path if os.path.isfile(vocab_path) else params["bert_model"],
            do_lower_case=params["lowercase"])

        # init model
        self.build_model()
        # Path to pytorch_model.bin for the biencoder model (not the pre-trained BERT model)
        model_path = params.get("path_to_biencoder_model")
        if model_path is None:
            model_path = params.get("path_to_model")
        if model_path is not None:
            self.load_model(model_path)
        self.model = self.model.to(self.device)
        self.data_parallel = params.get("data_parallel")
        if self.data_parallel:
            self.model = torch.nn.DataParallel(self.model)
コード例 #11
0
    def __init__(self, data_dir, output_dir, num_labels, args):

        self.data_dir = data_dir
        self.output_dir = output_dir
        self.num_labels = num_labels

        self.weight_decay = args.weight_decay

        self.eval_steps = args.eval_steps
        self.gradient_accumulation_steps = args.gradient_accumulation_steps
        self.warmup_steps = args.warmup_steps
        self.learning_rate = args.learning_rate
        self.adam_epsilon = args.adam_epsilon
        self.train_steps = args.train_steps
        self.per_gpu_eval_batch_size = args.per_gpu_eval_batch_size
        self.train_batch_size = args.per_gpu_train_batch_size
        self.eval_batch_size = self.per_gpu_eval_batch_size
        self.do_lower_case = args.do_lower_case
        self.model_name_or_path = args.model_name_or_path
        self.max_seq_length = args.max_seq_length
        self.seed = args.seed
        self.seed_everything()
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = BertTokenizer.from_pretrained(
            self.model_name_or_path, do_lower_case=self.do_lower_case)

        self.do_test = args.do_test
        self.do_eval = True
        self.args = args
コード例 #12
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--train_corpus', type=Path, required=True)
    parser.add_argument("--output_dir", type=Path, required=True)
    parser.add_argument("--bert_model", type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    parser.add_argument("--do_lower_case", action="store_true")
    parser.add_argument("--do_whole_word_mask", action="store_true",
                        help="Whether to use whole word masking rather than per-WordPiece masking.")
    parser.add_argument("--reduce_memory", action="store_true",
                        help="Reduce memory usage for large datasets by keeping data on disc rather than in memory")

    parser.add_argument("--num_workers", type=int, default=1,
                        help="The number of workers to use to write the files")
    parser.add_argument("--epochs_to_generate", type=int, default=3,
                        help="Number of epochs of data to pregenerate")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument("--short_seq_prob", type=float, default=0.1,
                        help="Probability of making a short sentence as a training example")
    parser.add_argument("--masked_lm_prob", type=float, default=0.15,
                        help="Probability of masking each token for the LM task")
    parser.add_argument("--max_predictions_per_seq", type=int, default=20,
                        help="Maximum number of tokens to mask in each sequence")

    args = parser.parse_args()

    if args.num_workers > 1 and args.reduce_memory:
        raise ValueError("Cannot use multiple workers while reducing memory")

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    vocab_list = list(tokenizer.vocab.keys())
    with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
        with args.train_corpus.open() as f:
            doc = []
            for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
                line = line.strip()
                if line == "":
                    docs.add_document(doc)
                    doc = []
                else:
                    tokens = tokenizer.tokenize(line)
                    doc.append(tokens)
            if doc:
                docs.add_document(doc)  # If the last doc didn't end on a newline, make sure it still gets added
        if len(docs) <= 1:
            exit("ERROR: No document breaks were found in the input file! These are necessary to allow the script to "
                 "ensure that random NextSentences are not sampled from the same document. Please add blank lines to "
                 "indicate breaks between documents in your input file. If your dataset does not contain multiple "
                 "documents, blank lines can be inserted at any natural boundary, such as the ends of chapters, "
                 "sections or paragraphs.")

        args.output_dir.mkdir(exist_ok=True)

        if args.num_workers > 1:
            writer_workers = Pool(min(args.num_workers, args.epochs_to_generate))
            arguments = [(docs, vocab_list, args, idx) for idx in range(args.epochs_to_generate)]
            writer_workers.starmap(create_training_file, arguments)
        else:
            for epoch in trange(args.epochs_to_generate, desc="Epoch"):
                create_training_file(docs, vocab_list, args, epoch)
コード例 #13
0
    def __init__(self, params):
        'Initialization'
        self.numDataPoints = {}
        num_samples_train = params['num_train_samples']
        num_samples_val = params['num_val_samples']
        self._image_features_reader = ImageFeaturesH5Reader(
            params['visdial_image_feats'])
        with open(params['visdial_processed_train_dense']) as f:
            self.visdial_data_train = json.load(f)
            if params['overfit']:
                if num_samples_train:
                    self.numDataPoints['train'] = num_samples_train
                else:
                    self.numDataPoints['train'] = 5
            else:
                if num_samples_train:
                    self.numDataPoints['train'] = num_samples_train
                else:
                    self.numDataPoints['train'] = len(
                        self.visdial_data_train['data']['dialogs'])

        with open(params['visdial_processed_val']) as f:
            self.visdial_data_val = json.load(f)
            if params['overfit']:
                if num_samples_val:
                    self.numDataPoints['val'] = num_samples_val
                else:
                    self.numDataPoints['val'] = 5
            else:
                if num_samples_val:
                    self.numDataPoints['val'] = num_samples_val
                else:
                    self.numDataPoints['val'] = len(
                        self.visdial_data_val['data']['dialogs'])

        self.overfit = params['overfit']

        with open(params['visdial_processed_train_dense_annotations']) as f:
            self.visdial_data_train_ndcg = json.load(f)
        with open(params['visdial_processed_val_dense_annotations']) as f:
            self.visdial_data_val_ndcg = json.load(f)

        #train val setup
        self.numDataPoints['trainval'] = self.numDataPoints[
            'train'] + self.numDataPoints['val']

        self.num_options = params["num_options"]
        self._split = 'train'
        self.subsets = ['train', 'val', 'trainval']
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        self.tokenizer = tokenizer
        # fetching token indicecs of [CLS] and [SEP]
        tokens = ['[CLS]', '[MASK]', '[SEP]']
        indexed_tokens = tokenizer.convert_tokens_to_ids(tokens)
        self.CLS = indexed_tokens[0]
        self.MASK = indexed_tokens[1]
        self.SEP = indexed_tokens[2]
        self.params = params
        self._max_region_num = 37
コード例 #14
0
ファイル: run_TSbert_v3.py プロジェクト: cooelf/TADAM
def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    set_seed()
    # args.output_dir=os.path.join(args.data_dir,args.task_name,args.output_dir)
    # args.temp_score_file_path=os.path.join(args.data_dir,args.task_name,args.temp_score_file_path)
    # args.input_cache_dir=os.path.join(args.data_dir, args.task_name, args.input_cache_dir)
    # if not os.path.exists(args.output_dir):
    #     os.makedirs(args.output_dir)
    # if not os.path.exists(args.input_cache_dir):
    #     os.makedirs(args.input_cache_dir)
    # myDataProcessorUtt = MyDataProcessorUtt(args.max_utterance_num)
    myDataProcessorSeg = MyDataProcessorSegres()
    # label_list = myDataProcessorUtt.get_labels()
    # num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    config = BertConfig.from_pretrained(args.bert_model)
    if args.do_train:
        logger.info("start train...")
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        # if(os.path.exists(output_model_file)):
        #     logger.info("load dict...")
        #     model_state_dict = torch.load(output_model_file)
        #     model = BertForSequenceClassificationTS.from_pretrained(args.bert_model, config=config,
        #                                                             state_dict=model_state_dict, num_labels=num_labels)
        # else:
        model = BertForSequenceClassificationTSv3.from_pretrained(
            args.bert_model,
            config=config,
            max_seg_num=args.max_segment_num,
            max_seq_len=args.max_seq_length,
            device=device)
        model.to(device)
        if n_gpu > 1:
            model = torch.nn.DataParallel(model)
        train(model, tokenizer, device, myDataProcessorSeg, n_gpu)
    else:
        logger.info("start test...")
        logger.info("load dict...")
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        model_state_dict = torch.load(output_model_file)
        model = BertForSequenceClassificationTSv3.from_pretrained(
            args.bert_model,
            config=config,
            state_dict=model_state_dict,
            max_seg_num=args.max_segment_num,
            max_seq_len=args.max_seq_length,
            device=device)
        model.to(device)
        if n_gpu > 1:
            model = torch.nn.DataParallel(model)
        # similar_score(model, tokenizer, device,myDataProcessorSeg)
        result = eval(model, tokenizer, device, myDataProcessorSeg)
        logger.info(
            "Evaluation Result: \nMAP: %f\tMRR: %f\tP@1: %f\tR1: %f\tR2: %f\tR5: %f",
            result[0], result[1], result[2], result[3], result[4], result[5])
        print(result)
コード例 #15
0
def main():
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',
                                              do_lower_case=True)
    reader = BertMCQParallelReader()

    out = reader.read("dummy_data.jsonl", tokenizer, 70, None)
    print(len(out))
    tokens, segs, masks, labels = out[0]
コード例 #16
0
ファイル: processors.py プロジェクト: lixiangpengcs/pythia
 def __init__(self, config, *args, **kwargs):
     self.max_length = config.max_length
     self.bert_tokenizer = BertTokenizer.from_pretrained(
         'bert-base-uncased')
     assert self.bert_tokenizer.encode(self.bert_tokenizer.pad_token) == [0]
     self.get_qgen_inds = getattr(config, 'get_qgen_inds', False)
     if self.get_qgen_inds:
         print('computing question generation indices in bert tokenizer')
コード例 #17
0
    def preprocess(self, data, opt):
        """ Preprocess the data and convert to ids. """
        processed = []

        tqdm_data = tqdm(data)
        if opt["lower"]:
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        else:
            tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
        for d in tqdm_data:

            bert_tokenize(tokenizer, d, opt)
            tokens = list(d["token"])
            seq_len = len(tokens) + 2

            # anonymize tokens
            ss, se = d['subj_start'], d['subj_end']
            os, oe = d['obj_start'], d['obj_end']

            pos = d['stanford_pos']
            ner = d['stanford_ner']
            deprel = d['stanford_deprel']
            head = [int(x) for x in d['stanford_head']]
            assert any([x == 0 for x in head])

            positions = get_positions(d['subj_start'] + 1, d['subj_end'] + 1,
                                      d['obj_start'] + 1, d['obj_end'] + 1,
                                      self.e_type2idx[d["subj_type"]],
                                      self.e_type2idx[d["obj_type"]], seq_len)
            subj_type = d['subj_type']
            obj_type = d['obj_type']
            relation = self.r_type2idx[d['relation']]
            processed.append({
                "len": seq_len,
                "tokens": tokens,
                "pos": pos,
                "ner": ner,
                "deprel": deprel,
                "head": head,
                "position": positions,
                "s_type": subj_type,
                "o_type": obj_type,
                "relation": relation
            })
        return processed
コード例 #18
0
 def __init__(self) -> None:
     os.environ[
         'CORENLP_HOME'] = '{}/stanford-corenlp-full-2018-10-05'.format(
             os.environ['HOME'])
     self.client = CoreNLPClient()
     self.client.ensure_alive()
     self.do_lower_case = '-cased' not in config.bert_model
     self.basic_tokenizer: BasicTokenizer \
         = BertTokenizer.from_pretrained(config.bert_model, do_lower_case=self.do_lower_case).basic_tokenizer
コード例 #19
0
def make_gan_data(mathqa_train,
                  out_dir,
                  bert_model,
                  do_lower_case,
                  subset=1e8):
    print('ma')
    """
    Parameters:
        mathqa_train    str
            path to MathQA train.json
        out_dir str
            path to output dir
        subset  int
            size of subset adopted
    NOTE: use the whole train set rather than 3k 
    (actually 2.4k) for training
    """
    def is_bad(sent):
        # 21476 out of 29837 MWPs used (0.7198)
        if any([s in '+-*/|@' for s in sent]):
            return True
        return True if sum([1 for s in sent
                            if s.isalpha()]) < len(sent) / 2 else False

    obj = []
    with open(mathqa_train, 'r') as jsonfile:
        obj = json.load(jsonfile)
        print(f'{len(obj)} MWPs from {mathqa_train}')

    good_mwps, bad_mwps = [], []
    for imwp in trange(len(obj)):
        mwp = obj[imwp]
        if is_bad(mwp['Problem']):  #or mwp['category'] == 'other':#TODO
            bad_mwps.append(mwp)
            continue  # 27688 out of 29837, i.e. 92.8% kept

        good_mwps.append(mwp)
        if len(good_mwps) == subset:
            break

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    tokenizer = BertTokenizer.from_pretrained(bert_model,
                                              do_lower_case=do_lower_case)
    with open(os.path.join(out_dir, 'mathqa.txt'), 'w') as fout:
        for imwp in trange(len(good_mwps)):
            mwp = good_mwps[imwp]
            problem = ' [SEP]'.join(sent_tokenize(mwp['Problem'])) + ' [SEP]'
            toks = [CLS]
            for tok in problem.split():
                if tok is not SEP:
                    toks.extend(tokenizer.tokenize(tok))
                    #if random() > 0.5:
                    #    toks.extend(['[MASK]']*len(tokenizer.tokenize(tok)))
                else:
                    toks.append(SEP)
            fout.writelines(' '.join(toks) + '@@@' + mwp['category'] + '\n')
コード例 #20
0
 def __init__(self, config, *args, **kwargs):
     self.max_length = config.max_length
     pythia_root = get_pythia_root()
     VOCAB = 'bert-base-uncased-vocab.txt'
     self.bert_tokenizer = BertTokenizer.from_pretrained(
         os.path.join(pythia_root, config.model_data_dir, 'bert', VOCAB))
     assert self.bert_tokenizer.encode(self.bert_tokenizer.pad_token) == [0]
     self.get_qgen_inds = getattr(config, 'get_qgen_inds', False)
     if self.get_qgen_inds:
         print('computing question generation indices in bert tokenizer')
コード例 #21
0
ファイル: pretrain.py プロジェクト: sumerzhang/PytorchNER_zh
def load_pretrain(configs, model_class, fine_tune_dir, processor, eval=False):
    """
	configs: 配置文件
	model_class: 模型名称
	fine_tune_dir: 微调模型保存路径
	processor: DataProcessor
	eval: 是否验证
	"""

    model_class_map = {
        'Bert': Bert,
        'BertCRF': BertCRF,
        'BertBiLSTMCRF': BertBiLSTMCRF,
        'BiLSTM': BiLSTM,
        'BiLSTMCRF': BiLSTMCRF
    }
    model_class_ = model_class_map[model_class]
    label_list = processor.get_labels()

    check_dir(fine_tune_dir)
    if eval:
        model_pretrained_path = fine_tune_dir
    else:
        model_pretrained_path = configs['pretrained_model_dir']
    tokenizer = BertTokenizer.from_pretrained(
        model_pretrained_path, do_lower_case=configs['lower_case'])

    if model_class in ['Bert', 'BertCRF', 'BertBiLSTMCRF']:
        bert_config = BertConfig.from_pretrained(model_pretrained_path,
                                                 num_labels=len(label_list),
                                                 finetuning_task="ner")
        model = model_class_.from_pretrained(model_pretrained_path,
                                             config=bert_config,
                                             model_configs=configs)

    elif model_class in ['BiLSTM', 'BiLSTMCRF']:
        configs['num_labels'] = len(label_list)
        if configs['use_pretrained_embedding']:
            pretrained_word_embed = build_word_embed(
                tokenizer,
                pretrain_embed_file=configs['pretrain_embed_file'],
                pretrain_embed_pkl=configs['pretrain_embed_pkl'])
            configs['word_vocab_size'] = pretrained_word_embed.shape[0]
            configs['word_embedding_dim'] = pretrained_word_embed.shape[1]
        else:
            pretrained_word_embed = None
        if eval:
            model_pretrained_path = fine_tune_dir
            model = model_class_.from_pretrained(model_pretrained_path,
                                                 pretrained_word_embed)
        else:
            model = model_class_(configs, pretrained_word_embed)
    else:
        raise ValueError("Invalid Model Class")
    return model, tokenizer
コード例 #22
0
    def test_sequence_builders(self):
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        text = tokenizer.encode("sequence builders")
        text_2 = tokenizer.encode("multi-sequence build")

        encoded_sentence = tokenizer.add_special_tokens_single_sentence(text)
        encoded_pair = tokenizer.add_special_tokens_sentences_pair(
            text, text_2)

        assert encoded_sentence == [101] + text + [102]
        assert encoded_pair == [101] + text + [102] + text_2 + [102]
コード例 #23
0
ファイル: task_utils.py プロジェクト: anshiquanshu66/volta
def LoadDatasetEval(args, config, task_cfg, task_id):
    if "roberta" in args.bert_model:
        tokenizer = RobertaTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    else:
        tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    task = "TASK" + task_id
    task_name = task_cfg[task]["name"]

    # initialize the feature reader
    feats_h5path1 = task_cfg[task]["features_h5path1"]
    feats_h5path2 = task_cfg[task]["features_h5path2"]
    features_reader1 = ImageFeaturesH5Reader(feats_h5path1, config, args.in_memory) if feats_h5path1 != "" else None
    features_reader2 = ImageFeaturesH5Reader(feats_h5path2, config, args.in_memory) if feats_h5path2 != "" else None

    batch_size = task_cfg[task].get("eval_batch_size", args.batch_size)
    if args.local_rank != -1:
        batch_size = int(batch_size / dist.get_world_size())

    logger.info("Loading %s Dataset with batch size %d" % (task_name, batch_size))
    if args.split:
        eval_split = args.split
    else:
        eval_split = task_cfg[task]["val_split"]

    dset_val = DatasetMapEval[task_name](
        task=task_cfg[task]["name"],
        dataroot=task_cfg[task]["dataroot"],
        annotations_jsonpath=task_cfg[task]["val_annotations_jsonpath"],
        split=eval_split,
        image_features_reader=features_reader1,
        gt_image_features_reader=features_reader2,
        tokenizer=tokenizer,
        bert_model=args.bert_model,
        padding_index=0,
        max_seq_length=task_cfg[task]["max_seq_length"],
        max_region_num=task_cfg[task]["max_region_num"],
        num_locs=config.num_locs,
        add_global_imgfeat=config.add_global_imgfeat,
        append_mask_sep=(config.fusion_method == 'vl-bert_vqa'),
    )

    dl_val = DataLoader(
        dset_val,
        shuffle=False,
        batch_size=batch_size,
        num_workers=10,
        pin_memory=True,
        drop_last=args.drop_last,
    )
    task2num_iters = {task: len(dl_val)}

    return batch_size, task2num_iters, dset_val, dl_val
コード例 #24
0
def LoadDatasets(args, task_cfg, ids, split="trainval"):
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",
                                              do_lower_case=True)

    task_feature_reader1 = {}
    task_feature_reader2 = {}
    for i, task_id in enumerate(ids):
        task = "TASK" + task_id + "1"
        if task_cfg[task]["features_h5path1"] not in task_feature_reader1:
            task_feature_reader1[task_cfg[task]["features_h5path1"]] = None
        if task_cfg[task]["features_h5path2"] not in task_feature_reader2:
            task_feature_reader2[task_cfg[task]["features_h5path2"]] = None
コード例 #25
0
ファイル: exp_utils.py プロジェクト: cleeag/tac_bert
def model_samples_from_json(config, token_id_dict, unknown_token_id, type_id_dict,
                            mentions_file, sents_file):

    if config.use_bert:
        tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False)
        print('bert tokenizer loaded')
    sent_tokens_id_dict = dict()
    sent_tokens_dict = dict()
    with open(sents_file, encoding='utf-8') as f:
        for line in f:
            sent = json.loads(line)
            tokens = sent['text'].split(' ')
            sent_tokens_id_dict[sent['sent_id']] = [token_id_dict.get(t, unknown_token_id) for t in tokens]
            sent_tokens_dict[sent['sent_id']] = [t for t in tokens]

    samples = list()
    mentions = datautils.read_json_objs(mentions_file)
    for m in mentions:
        if config.use_bert:
            org_tok_sents = sent_tokens_dict[m['sent_id']]
            bert_sent_tokens = org_tok_sents[:m['span'][0]] + ['[MASK]'] + org_tok_sents[m['span'][1]:]
            full_sent = ' '.join(bert_sent_tokens)
            tokens = ["[CLS]"]
            t = tokenizer.tokenize(full_sent)
            tokens.extend(t)
            mention_token_idx = 0
            for i, x in enumerate(tokens):
                if x == '[MASK]':
                    mention_token_idx = i
                    break
            tokens.append("[SEP]")
            sentence_token = tokenizer.convert_tokens_to_ids(tokens)

        else:
            sentence_token = sent_tokens_id_dict[m['sent_id']]
            mention_token_idx = m['span'][0]

        labels = m['labels']
        label_ids = [type_id_dict[t] for t in labels]
        sample = [m['mention_id'],
                  sent_tokens_id_dict[m['sent_id']][m['span'][0]:m['span'][1]],
                  sentence_token,
                  mention_token_idx,
                  label_ids
                  ]
        samples.append(sample)
    return samples
コード例 #26
0
    def __init__(self, params):
        super(CrossEncoderRanker, self).__init__()
        self.params = params
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() and not params["no_cuda"] else "cpu"
        )
        self.n_gpu = torch.cuda.device_count()

        if params.get("roberta"):
            self.tokenizer = RobertaTokenizer.from_pretrained(params["bert_model"], do_lower_case=params["lowercase"])
        else:
            self.tokenizer = BertTokenizer.from_pretrained(
                params["bert_model"], do_lower_case=params["lowercase"]
            )

        special_tokens_dict = {
            "additional_special_tokens": [
                ENT_START_TAG,
                ENT_END_TAG,
                ENT_TITLE_TAG,
            ],
        }
        self.tokenizer.add_special_tokens(special_tokens_dict)
        self.NULL_IDX = self.tokenizer.pad_token_id
        self.START_TOKEN = self.tokenizer.cls_token
        self.END_TOKEN = self.tokenizer.sep_token
        self.START_MENTION_ID = self.tokenizer.convert_tokens_to_ids(ENT_START_TAG)
        self.END_MENTION_ID = self.tokenizer.convert_tokens_to_ids(ENT_END_TAG)

        # keep some parameters around
        self.add_sigmoid = params["add_sigmoid"]
        self.margin = params["margin"]
        self.objective = params["objective"]
        self.pos_neg_loss = params.get("pos_neg_loss", False)
        assert self.objective == "softmax" or self.objective == "max_margin"

        # init model
        self.build_model()
        if params["path_to_model"] is not None:
            self.load_model(params["path_to_model"])

        self.model = self.model.to(self.device)
        self.data_parallel = params.get("data_parallel")
        if self.data_parallel:
            self.model = torch.nn.DataParallel(self.model)
コード例 #27
0
def score_weak_learner_physical_v2(fname, data):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    model_dir = "/scratch/kkpal/serdir_bertlgww_concat_kb_1e5/"
    model = BertMCQConcat.from_pretrained(
        model_dir,
        cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
                               'distributed_{}'.format(-1)))
    model.to(device)
    model = torch.nn.DataParallel(model)

    data_reader = BertMCQConcatReader()
    tokenizer = BertTokenizer.from_pretrained(
        "bert-large-uncased-whole-word-masking", do_lower_case=True)
    eval_data = data_reader.read_json(json=data,
                                      tokenizer=tokenizer,
                                      max_seq_len=128,
                                      max_number_premises=10)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=128)
    etq = tqdm(eval_dataloader, desc="Scoring")
    scores = []
    for input_ids, segment_ids, input_mask, label_ids in etq:
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)
        label_ids = label_ids.to(device)

        with torch.no_grad():
            outputs = model(input_ids, segment_ids, input_mask, label_ids)
            tmp_eval_loss = outputs[0]
            logits = outputs[1]
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            for logit, label in zip(logits, label_ids):
                scores.append(softmax(logit)[label])

    with jsonlines.open(fname + "_v2_scores.jsonl", mode='w') as writer:
        for row, score in zip(data, scores):
            if verbose:
                print(row["id"], score)
            writer.write({"id": row["id"], "score": score})
コード例 #28
0
def bertTokenizer(*args, **kwargs):
    """
    Instantiate a BertTokenizer from a pre-trained/customized vocab file
    Args:
    pretrained_model_name_or_path: Path to pretrained model archive
                                   or one of pre-trained vocab configs below.
                                       * bert-base-uncased
                                       * bert-large-uncased
                                       * bert-base-cased
                                       * bert-large-cased
                                       * bert-base-multilingual-uncased
                                       * bert-base-multilingual-cased
                                       * bert-base-chinese
    Keyword args:
    cache_dir: an optional path to a specific directory to download and cache
               the pre-trained model weights.
               Default: None
    do_lower_case: Whether to lower case the input.
                   Only has an effect when do_wordpiece_only=False
                   Default: True
    do_basic_tokenize: Whether to do basic tokenization before wordpiece.
                       Default: True
    max_len: An artificial maximum length to truncate tokenized sequences to;
             Effective maximum length is always the minimum of this
             value (if specified) and the underlying BERT model's
             sequence length.
             Default: None
    never_split: List of tokens which will never be split during tokenization.
                 Only has an effect when do_wordpiece_only=False
                 Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]

    Example:
        >>> import torch
        >>> sentence = 'Hello, World!'
        >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
        >>> toks = tokenizer.tokenize(sentence)
        ['Hello', '##,', 'World', '##!']
        >>> ids = tokenizer.convert_tokens_to_ids(toks)
        [8667, 28136, 1291, 28125]
    """
    tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
    return tokenizer
コード例 #29
0
def main():
    batch_size = 16
    max_seq_len = 128
    model_dir = 'fine_tuned--bert-base-uncased--SEQ_LEN=128--BATCH_SIZE=32--HEAD=1'
    output_filename = os.path.join(
        model_dir, "fine-tuned-sent-classifer-test-results.csv")
    test_sets_dir = "dataset\custom_test_set"
    test_files = [filename for filename in os.listdir(test_sets_dir)]
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    tokenizer = BertTokenizer.from_pretrained(model_dir)
    model = BertForSequenceClassification.from_pretrained(model_dir)
    model.to(device)
    criterion = Softmax()

    accuracies = {}

    for filename in test_files:
        print("Testing on dataset: {}".format(filename))
        file_path = os.path.join(test_sets_dir, filename)
        test_dataset = Dataset(file_path, tokenizer, max_seq_len)
        test_dataloader = data.DataLoader(test_dataset, batch_size=batch_size)
        accuracy = 0
        for batch in test_dataloader:
            with torch.no_grad():
                batch = (t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, labels = batch
                outputs = model(input_ids, input_mask, segment_ids)
                logits = outputs[0]
                _, predictions = criterion(logits).max(-1)
                results = predictions == labels
                accuracy += results.sum().item()

        accuracy = accuracy / len(test_dataset)
        print("Model achieved {}'%' accuracy".format(accuracy))
        dataset_name = filename.split('.')[0]
        accuracies[dataset_name] = accuracy

    with open(output_filename, 'w') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=accuracies.keys())
        writer.writeheader()
        writer.writerow(accuracies)
コード例 #30
0
ファイル: mainnew.py プロジェクト: cytsinghua/TextClassify
 def __init__(self, args):
     self.valid_step = 1
     self.warmup_steps = 0
     self.adam_epsilon = 1e-8
     self.data_dir = './datapro/ubuntu/'
     self.model_name_or_path = './uncased_L-12_H-768_A-12/'
     self.tokenizer = BertTokenizer.from_pretrained(self.model_name_or_path,
                                                    do_lower_case=True)
     self.learning_rate = 5e-5
     self.weight_decay = 0.0
     self.train_steps = 10
     self.device = torch.device('cuda')
     self.debug_mode = False
     self.model_name = 'bert'
     self.seed = 2019
     self.seed_everything()
     self.max_len = 128
     self.epochs = 5
     self.batch_size = 16
     self.num_labels = 2
     self.args = args