# 'qv_arch': [[x_size,200],[200,200],[200,z_size*2]], # 'qz_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'rv_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'flow_hidden_size': 100 # } # # model = VAE(hyper_config) # else: # print ('What') # fadas trained_model = VAE(hyper_config) # model.load_params(home+'/Documents/tmp/first_try/'+args.model+'/params_'+args.model+'_2800.pt') trained_model.load_params(home+'/Documents/tmp/new_training/standard/params_standard_1000.pt') # now to reset encoder, or even load a new one with different architecture. # could maybe init a new one. and get model to ignore the old one. # antoher option is init the right model then just load the params you want # dont init q # how does it know which params are the decoder ones, besides shape? #ah they have keys names! mine are mostly numbers # # print (model.state_dict())
hyper_config = { 'x_size': x_size, 'z_size': z_size, 'act_func': F.tanh, # F.relu, 'encoder_arch': [[x_size, l_size], [l_size, l_size], [l_size, z_size * 2]], 'decoder_arch': [[z_size, l_size], [l_size, l_size], [l_size, x_size]], 'q_dist': standard, #hnf,#aux_nf,#flow1,#, } model = VAE(hyper_config) path_to_save_variables = this_dir + '/params_standard' + '_' # elif args.model == 'flow1': # this_dir = directory+'/flow1' # # if not os.path.exists(this_dir): # # os.makedirs(this_dir) # # print ('Made directory:'+this_dir) # # experiment_log = this_dir+'/log.txt' # # with open(experiment_log, "a") as myfile: # # myfile.write("Flow1" +'\n')
which_model = 'standard' if which_model == 'standard': print(which_model) this_dir = directory+'/standard' hyper_config = { 'x_size': x_size, 'z_size': z_size, 'act_func': F.tanh,# F.relu, 'encoder_arch': [[x_size,l_size],[l_size,l_size],[l_size,z_size*2]], 'decoder_arch': [[z_size,l_size],[l_size,l_size],[l_size,x_size]], 'q_dist': standard,#hnf,#aux_nf,#flow1,#, } model = VAE(hyper_config) path_to_save_variables=this_dir+'/params_standard' +'_' # elif args.model == 'flow1': # this_dir = directory+'/flow1' # # if not os.path.exists(this_dir): # # os.makedirs(this_dir) # # print ('Made directory:'+this_dir)
# 'decoder_arch': [[z_size,200],[200,200],[200,x_size]], # 'q_dist': hnf,#aux_nf,#flow1,#standard,#, #, #, #,#, #,# , # 'n_flows': 2, # 'qv_arch': [[x_size,200],[200,200],[200,z_size*2]], # 'qz_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'rv_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'flow_hidden_size': 100 # } # # model = VAE(hyper_config) else: print('What') fadas model = VAE(hyper_config) print('done init') model.load_params(home + '/Documents/tmp/large_N_time/' + args.model + '/params_' + args.model + '_1.pt') #Train params learning_rate = .001 batch_size = 100 k = 1 epochs = 3000 #save params and compute IW and AIS start_at = 100 save_freq = 300 display_epoch = 10
# with open(experiment_log, "a") as myfile: # myfile.write("Standard" +'\n') print('Init standard model') hyper_config = { 'x_size': x_size, 'z_size': z_size, 'act_func': F.tanh, # F.relu, 'encoder_arch': [[x_size, 200], [200, 200], [200, z_size * 2]], 'decoder_arch': [[z_size, 200], [200, 200], [200, x_size]], 'q_dist': standard_layernorm #standard,#hnf,#aux_nf,#flow1,#, } model = VAE(hyper_config) # elif model_ == 'flow1': # this_dir = directory+'/flow1' # if not os.path.exists(this_dir): # os.makedirs(this_dir) # print ('Made directory:'+this_dir) # experiment_log = this_dir+eval_file # with open(experiment_log, "a") as myfile: # myfile.write("Flow1" +'\n') # print('Init flow model') # hyper_config = {
'qv_arch': [[x_size,200],[200,200],[200,z_size*2]], 'qz_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], 'rv_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], 'flow_hidden_size': 100 } # model = VAE(hyper_config) else: print ('What') fadas model = VAE(hyper_config) # model.load_params(home+'/Documents/tmp/first_try/'+args.model+'/params_'+args.model+'_2800.pt') #Train params # learning_rate = .001 batch_size = 50 k = 1 # epochs = 3000 #save params and compute IW and AIS start_at = 100 save_freq = 300 display_epoch = 10
# 'decoder_arch': [[z_size,200],[200,200],[200,x_size]], # 'q_dist': aux_nf,#aux_nf,#flow1,#standard,#, #, #, #,#, #,# , # 'n_flows': 2, # 'qv_arch': [[x_size,200],[200,200],[200,z_size*2]], # 'qz_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'rv_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'flow_hidden_size': 100 # } # # model = VAE(hyper_config) # else: # print ('What') # fadas trained_model = VAE(hyper_config) # model.load_params(home+'/Documents/tmp/first_try/'+args.model+'/params_'+args.model+'_2800.pt') trained_model.load_params( home + '/Documents/tmp/new_training/standard/params_standard_1000.pt') # now to reset encoder, or even load a new one with different architecture. # could maybe init a new one. and get model to ignore the old one. # antoher option is init the right model then just load the params you want # dont init q # how does it know which params are the decoder ones, besides shape? #ah they have keys names! mine are mostly numbers # # print (model.state_dict()) # print (model.state_dict().keys()) # fsdaas
# myfile.write("Standard" +'\n') print('Init standard model') hyper_config = { 'x_size': x_size, 'z_size': z_size, 'act_func': F.tanh,# F.relu, 'encoder_arch': [[x_size,200],[200,200],[200,z_size*2]], 'decoder_arch': [[z_size,200],[200,200],[200,x_size]], 'q_dist': standard_layernorm #standard,#hnf,#aux_nf,#flow1,#, } model = VAE(hyper_config) # elif model_ == 'flow1': # this_dir = directory+'/flow1' # if not os.path.exists(this_dir): # os.makedirs(this_dir) # print ('Made directory:'+this_dir) # experiment_log = this_dir+eval_file # with open(experiment_log, "a") as myfile: # myfile.write("Flow1" +'\n')
hyper_config = { 'x_size': x_size, 'z_size': z_size, 'act_func': F.tanh, # F.relu, 'encoder_arch': [[x_size, l_size], [l_size, l_size], [l_size, z_size * 2]], 'decoder_arch': [[z_size, l_size], [l_size, l_size], [l_size, x_size]], 'q_dist': standard, #hnf,#aux_nf,#flow1,#, } model = VAE(hyper_config) elif model_ == 'flow1': this_dir = directory + '/flow1' if not os.path.exists(this_dir): os.makedirs(this_dir) print('Made directory:' + this_dir) experiment_log = this_dir + eval_file with open(experiment_log, "a") as myfile: myfile.write("Flow1" + '\n') print('Init flow model') hyper_config = {
myfile.write("Standard" +'\n') print('Init standard model') hyper_config = { 'x_size': x_size, 'z_size': z_size, 'act_func': F.tanh,# F.relu, 'encoder_arch': [[x_size,200],[200,200],[200,z_size*2]], 'decoder_arch': [[z_size,200],[200,200],[200,x_size]], 'q_dist': standard,#hnf,#aux_nf,#flow1,#, } model = VAE(hyper_config) elif args.model == 'flow1': this_dir = directory+'/flow1' if not os.path.exists(this_dir): os.makedirs(this_dir) print ('Made directory:'+this_dir) experiment_log = this_dir+eval_file with open(experiment_log, "a") as myfile: myfile.write("Flow1" +'\n')
# 'q_dist': hnf,#aux_nf,#flow1,#standard,#, #, #, #,#, #,# , # 'n_flows': 2, # 'qv_arch': [[x_size,200],[200,200],[200,z_size*2]], # 'qz_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'rv_arch': [[x_size+z_size,200],[200,200],[200,z_size*2]], # 'flow_hidden_size': 100 # } # # model = VAE(hyper_config) else: print ('What') fadas model = VAE(hyper_config) print ('done init') model.load_params(home+'/Documents/tmp/large_N_time/'+args.model+'/params_'+args.model+'_1.pt') #Train params learning_rate = .001 batch_size = 100 k = 1 epochs = 3000 #save params and compute IW and AIS start_at = 100 save_freq = 300 display_epoch = 10