コード例 #1
0
ファイル: test_dcg.py プロジェクト: ahoyosid/pytorchltr
def test_ndcg_all_relevant():
    torch.manual_seed(42)
    scores = torch.FloatTensor([[10.0, 5.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 4.0, 2.0, 5.5]])
    ys = torch.LongTensor([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]])
    n = torch.LongTensor([5, 4])
    out = ndcg(scores, ys, n, k=5, exp=False)
    expected = torch.ones(2)

    assert out.numpy() == approx(expected.numpy())
コード例 #2
0
ファイル: test_dcg.py プロジェクト: ahoyosid/pytorchltr
def test_ndcg5_nonexp():
    torch.manual_seed(42)
    scores, ys, n = _generate_data()
    out = ndcg(scores, ys, n, k=5, exp=False)

    expected = torch.FloatTensor([
        1.5177825608059992 / 2.1309297535714578,
        3.3234658187877653 / 4.130929753571458
    ])

    assert out.numpy() == approx(expected.numpy())
コード例 #3
0
ファイル: test_dcg.py プロジェクト: ahoyosid/pytorchltr
def test_ndcg5_exp():
    torch.manual_seed(42)
    scores, ys, n = _generate_data()
    out = ndcg(scores, ys, n, k=5, exp=True)

    expected = torch.FloatTensor([
        1.5177825608059992 / 2.1309297535714578,
        5.847184833073595 / 8.130929753571458
    ])

    assert out.numpy() == approx(expected.numpy())
コード例 #4
0
ファイル: test_dcg.py プロジェクト: ahoyosid/pytorchltr
def test_ndcg3():
    torch.manual_seed(42)
    scores, ys, n = _generate_data()
    out = ndcg(scores, ys, n, k=3, exp=True)

    expected = torch.FloatTensor([
        1.1309297535714575 / 2.1309297535714578,
        5.4165082750002025 / 8.130929753571458
    ])

    assert out.numpy() == approx(expected.numpy())
コード例 #5
0
ファイル: 01-basic-usage.py プロジェクト: ahoyosid/pytorchltr
def evaluate():
    model.eval()
    loader = torch.utils.data.DataLoader(test,
                                         batch_size=2,
                                         shuffle=True,
                                         collate_fn=test.collate_fn())
    ndcg_score = 0.0
    for batch in loader:
        xs, ys, n = batch.features, batch.relevance, batch.n
        ndcg_score += float(torch.sum(ndcg(model(xs), ys, n, k=10)))

    ndcg_score /= len(test)
    model.train()
    return ndcg_score