discount=0.99, step_size=0.01, use_finite_diff_hvp=True, symmetric_finite_diff=False, # Uncomment both lines (this and the plot parameter below) to enable plotting # plot=True, ) algo.train() # if __name__ == '__main__': # run_task() variants = VG().variants() for v in variants: run_experiment_lite( run_task, exp_prefix='trpo_cartpole_comparison', # Number of parallel workers for sampling n_parallel=1, # Only keep the snapshot parameters for the last iteration snapshot_mode="last", # Specifies the seed for the experiment. If this is not provided, a random seed # will be used seed=v['seed'], variant=v, # dry=True, # plot=True, )
# plot=True, ) algo.train() # if __name__ == '__main__': # run_task() variants = VG().variants() for v in variants: run_experiment_lite( run_task, exp_prefix="softq_multigoal", # Number of parallel workers for sampling n_parallel=1, # Only keep the snapshot parameters for the last iteration snapshot_mode="last", # Specifies the seed for the experiment. If this is not provided, a random seed # will be used seed=v["seed"], variant=v, # plot=True, # terminate_machine=False, )
batch_size=50000, max_path_length=500, discount=0.99, step_size=0.01, use_finite_diff_hvp=True, # plot=True, ) algo.train() variants = VG().variants() for v in variants: run_experiment_lite( run_task, exp_prefix='trpo_half_cheetah', # Number of parallel workers for sampling n_parallel=1, # Only keep the snapshot parameters for the last iteration snapshot_mode='last', # Specifies the seed for the experiment. If this is not provided, a random seed # will be used seed=v['seed'], variant=v, mode='local', # dry=True, # plot=True, # terminate_machine=False, )