def test_multiple_labels_per_frame(self): frame_names = [f"{str(i)}.png" for i in range(3)] # Create csv containing a test frame videos. with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as f: f.write( "original_vido_id video_id frame_id path labels\n".encode()) with temp_frame_video(frame_names) as (frame_1_video_dir, data_1): for i, frame_name in enumerate(frame_names): original_video_id = str(frame_1_video_dir) video_id = "1" frame_id = str(i) path = pathlib.Path(frame_1_video_dir) / frame_name label = "0,100" f.write( f"{original_video_id} {video_id} {frame_id} {path} {label}\n" .encode()) f.close() clip_sampler = make_clip_sampler( "random", 0.1, # Total duration of 3 frames at 30fps is 0.1 seconds. ) ) dataset = Charades(f.name, clip_sampler=clip_sampler, video_sampler=SequentialSampler) sample = next(dataset) self.assertEqual(sample["label"], [[0, 100], [0, 100], [0, 100]]) self.assertTrue(sample["video"].equal(data_1))
def test_single_clip_per_video_works(self): with temp_charades_dataset() as (filename, video_1, video_2): clip_sampler = make_clip_sampler( "uniform", 0.1 # Total duration of 3 frames at 30fps is 0.1 seconds. ) dataset = Charades(filename, clip_sampler=clip_sampler, video_sampler=SequentialSampler) expected = [([[0], [0], [0]], video_1), ([[1], [1], [1]], video_2)] for sample, expected_sample in zip(dataset, expected): self.assertEqual(sample["label"], expected_sample[0]) self.assertTrue(sample["video"].equal(expected_sample[1]))
def test_multiple_clips_per_video_works(self): with temp_charades_dataset() as (filename, video_1, video_2): clip_sampler = make_clip_sampler( "uniform", 0.033 # Expects each clip to have 1 frame each. ) dataset = Charades(filename, clip_sampler=clip_sampler, video_sampler=SequentialSampler) expected = [ ([[0]], video_1[:, 0:1]), ([[0]], video_1[:, 1:2]), ([[0]], video_1[:, 2:3]), ([[1]], video_2[:, 0:1]), ([[1]], video_2[:, 1:2]), ([[1]], video_2[:, 2:3]), ] for sample, expected_sample in zip(dataset, expected): self.assertEqual(sample["label"], expected_sample[0]) self.assertTrue(sample["video"].equal(expected_sample[1]))
def Ptvcharades(cfg, mode): """ Construct PyTorchVideo Charades video loader. Load Charades data (frame paths, labels, etc. ) to Charades Dataset object. The dataset could be downloaded from Chrades official website (https://allenai.org/plato/charades/). Please see datasets/DATASET.md for more information about the data format. For `train` and `val` mode, a single clip is randomly sampled from every video with random cropping, scaling, and flipping. For `test` mode, multiple clips are uniformaly sampled from every video with center cropping. Args: cfg (CfgNode): configs. mode (string): Options includes `train`, `val`, or `test` mode. For the train and val mode, the data loader will take data from the train or val set, and sample one clip per video. For the test mode, the data loader will take data from test set, and sample multiple clips per video. """ # Only support train, val, and test mode. assert mode in [ "train", "val", "test", ], "Split '{}' not supported".format(mode) logger.info("Constructing Ptvcharades {}...".format(mode)) clip_duration = ((cfg.DATA.NUM_FRAMES - 1) * cfg.DATA.SAMPLING_RATE + 1) / cfg.DATA.TARGET_FPS if mode in ["train", "val"]: num_clips = 1 num_crops = 1 transform = Compose([ ApplyTransformToKey( key="video", transform=Compose([ Lambda(div255), NormalizeVideo(cfg.DATA.MEAN, cfg.DATA.STD), RandomShortSideScale( min_size=cfg.DATA.TRAIN_JITTER_SCALES[0], max_size=cfg.DATA.TRAIN_JITTER_SCALES[1], ), RandomCropVideo(cfg.DATA.TRAIN_CROP_SIZE), Lambda(rgb2bgr), ] + ([RandomHorizontalFlipVideo( p=0.5)] if cfg.DATA.RANDOM_FLIP else []) + [PackPathway(cfg)]), ), Lambda( functools.partial( process_charades_label, mode=mode, num_classes=cfg.MODEL.NUM_CLASSES, )), DictToTuple(num_clips, num_crops), ]) clip_sampler = make_clip_sampler("random", clip_duration) if cfg.NUM_GPUS > 1: video_sampler = DistributedSampler else: video_sampler = (RandomSampler if mode == "train" else SequentialSampler) else: num_clips = cfg.TEST.NUM_ENSEMBLE_VIEWS num_crops = cfg.TEST.NUM_SPATIAL_CROPS transform = Compose([ ApplyTransformToKey( key="video", transform=Compose([ Lambda(div255), NormalizeVideo(cfg.DATA.MEAN, cfg.DATA.STD), ShortSideScale(size=cfg.DATA.TEST_CROP_SIZE), ]), ), UniformCropVideo(size=cfg.DATA.TEST_CROP_SIZE), Lambda( functools.partial( process_charades_label, mode=mode, num_classes=cfg.MODEL.NUM_CLASSES, )), ApplyTransformToKey( key="video", transform=Compose( [Lambda(rgb2bgr), PackPathway(cfg)], ), ), DictToTuple(num_clips, num_crops), ]) clip_sampler = make_clip_sampler( "constant_clips_per_video", clip_duration, num_clips, num_crops, ) video_sampler = (DistributedSampler if cfg.NUM_GPUS > 1 else SequentialSampler) data_path = os.path.join(cfg.DATA.PATH_TO_DATA_DIR, "{}.csv".format(mode)) dataset = Charades( data_path=data_path, clip_sampler=clip_sampler, video_sampler=video_sampler, transform=transform, video_path_prefix=cfg.DATA.PATH_PREFIX, frames_per_clip=cfg.DATA.NUM_FRAMES, ) logger.info("Constructing charades dataloader (size: {}) from {}".format( len(dataset._path_to_videos), data_path)) return PTVDatasetWrapper( num_videos=len(dataset._path_to_videos), clips_per_video=num_clips, crops_per_clip=num_crops, dataset=dataset, )