コード例 #1
0
def get_available_qt_window():
    #Delete old windows
    for w in pytplot.pytplotWindows:
        if not w.isVisible():
            del w

    #Add a new one to the list
    pytplot.pytplotWindows.append(pytplot.PlotWindow())

    #Return the latest window
    return pytplot.pytplotWindows[-1]
コード例 #2
0
def get_available_qt_window(name='Plot'):
    # Delete old windows
    for n, w in zip(pytplot.pytplotWindow_names, pytplot.pytplotWindows):
        if not w.isVisible():
            del w
            del n

    # Add a new one to the list
    pytplot.pytplotWindows.append(pytplot.PlotWindow())
    pytplot.pytplotWindow_names.append(name)

    # Return the latest window
    return pytplot.pytplotWindows[-1]
コード例 #3
0
ファイル: tplot.py プロジェクト: Taz25/PyTplot
def tplot(name,
          var_label=None,
          auto_color=True,
          interactive=False,
          combine_axes=True,
          nb=False,
          save_file=None,
          gui=False,
          qt=True,
          pyqtgraph=False):
    """
    This is the function used to display the tplot variables stored in memory.
    The default output is to show the plots stacked on top of one another inside a GUI window.  
    The GUI window has the option to export the plots in either PNG or HTML formats.
    
    .. note::
        This plotting routine uses the python Bokeh library, which creates plots using HTML and Javascript.  
        Bokeh is technically still in beta, so future patches to Bokeh may require updates to this function.  
    
    Parameters:
        name : str / list
            List of tplot variables that will be plotted
        var_label : str, optional
            The name of the tplot variable you would like as
            a second x axis. 
        auto_color : bool, optional
            Automatically color the plot lines.
        interactive : bool, optional
            If True, a secondary interactive plot will be generated next to spectrogram plots.  
            Mousing over the spectrogram will display a slice of data from that time on the 
            interactive chart.
        combine_axis : bool, optional
            If True, the axes are combined so that they all display the same x range.  This also enables
            scrolling/zooming/panning on one plot to affect all of the other plots simultaneously.  
        nb : bool, optional
            If True, the plot will be displayed inside of a current Jupyter notebook session.  
        save_file : str, optional
            A full file name and path.  
            If this option is set, the plot will be automatically saved to the file name provided in an HTML format.
            The plots can then be opened and viewed on any browser without any requirements. 
        gui : bool, optional
            If True, then this function will output the 2 HTML components of the generated plots as string variables.
            This is useful if you are embedded the plots in your own GUI.  For more information, see 
            http://bokeh.pydata.org/en/latest/docs/user_guide/embed.html  
        qt : bool, optional
            If True, then this function will display the plot inside of the Qt window.  From this window, you
            can choose to export the plots as either an HTML file, or as a PNG.   
        
    Returns:
        None
        
    Examples:
        >>> #Plot a single line
        >>> import pytplot
        >>> x_data = [2,3,4,5,6]
        >>> y_data = [1,2,3,4,5]
        >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data})
        >>> pytplot.tplot("Variable1")
        
        >>> #Display two plots
        >>> x_data = [1,2,3,4,5]
        >>> y_data = [[1,5],[2,4],[3,3],[4,2],[5,1]]
        >>> pytplot.store_data("Variable2", data={'x':x_data, 'y':y_data})
        >>> pytplot.tplot(["Variable1", "Variable2"])
        
        >>> #Display 2 plots, using Variable1 as another x axis
        >>> x_data = [1,2,3]
        >>> y_data = [ [1,2,3] , [4,5,6], [7,8,9] ]
        >>> v_data = [1,2,3]
        >>> pytplot.store_data("Variable3", data={'x':x_data, 'y':y_data, 'v':v_data})
        >>> pytplot.options("Variable3", 'spec', 1)
        >>> pytplot.tplot(["Variable2", "Variable3"], var_label='Variable1')
        
        >>> #Plot all 3 tplot variables, sending the output to an HTML file
        >>> pytplot.tplot(["Variable1", "Variable2", "Variable3"], save_file='C:/temp/pytplot_example.html')
        
        >>> #Plot all 3 tplot variables, sending the HTML output to a pair of strings
        >>> div, component = pytplot.tplot(["Variable1", "Variable2", "Variable3"], gui=True)
    """
    if pyqtgraph:
        pytplot.layout = pg.GraphicsLayoutWidget()
        pytplot.layout.ci.layout.setHorizontalSpacing(50)
        if isinstance(pytplot.pytplotWindow, HTMLPlotWindow):
            pytplot.pytplotWindow = pytplot.PlotWindow()
        pytplot.pytplotWindow.newlayout(pytplot.layout)
        #Variables needed for pyqtgraph plots
        xaxis_thickness = 35
        varlabel_xaxis_thickness = 20
        title_thickness = 50
        #Setting up the pyqtgraph window
        pytplot.layout.setWindowTitle(pytplot.tplot_opt_glob['title_text'])
        pytplot.layout.resize(pytplot.tplot_opt_glob['window_size'][0],
                              pytplot.tplot_opt_glob['window_size'][1])
    else:
        doc.curdoc().clear()

    # Name for .html file containing plots
    out_name = ""

    #Check a bunch of things
    if (not isinstance(name, list)):
        name = [name]
        num_plots = 1
    else:
        num_plots = len(name)

    for i in range(num_plots):
        if isinstance(name[i], int):
            name[i] = list(pytplot.data_quants.keys())[name[i]]
        if name[i] not in pytplot.data_quants.keys():
            print(str(i) + " is currently not in pytplot")
            return

    if isinstance(var_label, int):
        var_label = list(pytplot.data_quants.keys())[var_label]

    # Vertical Box layout to store plots
    all_plots = []
    axis_types = []
    i = 0

    # Configure plot sizes
    total_psize = 0
    j = 0
    while (j < num_plots):
        total_psize += pytplot.data_quants[name[j]].extras['panel_size']
        j += 1

    if var_label is not None and pyqtgraph:
        varlabel_correction = len(var_label) * varlabel_xaxis_thickness
    else:
        varlabel_correction = 0
        xaxis_thickness = 0
        title_thickness = 0
    p_to_use = (pytplot.tplot_opt_glob['window_size'][1] - xaxis_thickness -
                title_thickness - varlabel_correction) / total_psize

    #Whether or not there is a title row in pyqtgraph
    titlerow = 0

    # Create all plots
    while (i < num_plots):
        last_plot = (i == num_plots - 1)
        temp_data_quant = pytplot.data_quants[name[i]]

        p_height = int(temp_data_quant.extras['panel_size'] * p_to_use)
        p_width = pytplot.tplot_opt_glob['window_size'][0]

        #Check plot type
        spec_keyword = temp_data_quant.extras.get('spec', False)
        alt_keyword = temp_data_quant.extras.get('alt', False)
        map_keyword = temp_data_quant.extras.get('map', False)

        if pyqtgraph:
            if last_plot:
                p_height += xaxis_thickness
            if i == 0:
                if _set_pyqtgraph_title(pytplot.layout):
                    titlerow = 1
            pytplot.layout.ci.layout.setRowPreferredHeight(
                i + titlerow, p_height)
            new_fig = TVarFigure(temp_data_quant, last_plot)
            pytplot.layout.addItem(new_fig, row=i + titlerow, col=0)
        else:
            if spec_keyword:
                new_fig = TVarFigureSpec(temp_data_quant,
                                         interactive=interactive,
                                         last_plot=last_plot)
            elif alt_keyword:
                new_fig = TVarFigureAlt(temp_data_quant,
                                        auto_color=auto_color,
                                        interactive=interactive,
                                        last_plot=last_plot)
            elif map_keyword:
                new_fig = TVarFigure2D(temp_data_quant,
                                       interactive=interactive,
                                       last_plot=last_plot)
            else:
                new_fig = TVarFigure1D(temp_data_quant,
                                       auto_color=auto_color,
                                       interactive=interactive,
                                       last_plot=last_plot)

            new_fig.setsize(height=p_height, width=p_width)

            if i == 0:
                new_fig.add_title()

        axis_types.append(new_fig.getaxistype())

        new_fig.buildfigure()

        # Add name of variable to output file name
        if last_plot:
            out_name += temp_data_quant.name
        else:
            out_name += temp_data_quant.name + '+'
        # Add plot to GridPlot layout
        all_plots.append(new_fig.getfig())
        i = i + 1
    # Add date of data to the bottom left corner and timestamp to lower right
    # if py_timestamp('on') was previously called

    if not pyqtgraph:
        total_string = ""
        if 'time_stamp' in pytplot.extra_layouts:
            total_string = pytplot.extra_layouts['time_stamp']

        ts = TimeStamp(text=total_string)
        pytplot.extra_layouts['data_time'] = ts
        all_plots.append([pytplot.extra_layouts['data_time']])

    #Add extra x axes if applicable
    if var_label is not None:
        if not isinstance(var_label, list):
            var_label = [var_label]
        if pyqtgraph:
            x_axes_index = 0
            for new_x_axis in var_label:
                axis_data_quant = pytplot.data_quants[new_x_axis]
                new_axis = TVarFigureAxisOnly(axis_data_quant)
                pytplot.layout.addItem(new_axis,
                                       row=num_plots + titlerow + x_axes_index,
                                       col=0)
                x_axes_index += 1
                axis_types.append(('time', False))
                all_plots.append(new_axis)
        else:
            x_axes = []
            x_axes_index = 0
            for new_x_axis in var_label:

                axis_data_quant = pytplot.data_quants[new_x_axis]
                axis_start = min(
                    axis_data_quant.data.min(skipna=True).tolist())
                axis_end = max(axis_data_quant.data.max(skipna=True).tolist())
                x_axes.append(Range1d(start=axis_start, end=axis_end))
                k = 0
                while (k < num_plots):
                    all_plots[k][0].extra_x_ranges[
                        'extra_' + str(new_x_axis)] = x_axes[x_axes_index]
                    k += 1
                all_plots[k - 1][0].add_layout(
                    LinearAxis(x_range_name='extra_' + str(new_x_axis)),
                    'below')
                all_plots[k - 1][0].plot_height += 22
                x_axes_index += 1

    # Set all plots' x_range and plot_width to that of the bottom plot
    #     so all plots will pan and be resized together.
    first_type = {}
    if combine_axes:
        k = 0
        while (k < len(axis_types)):
            if axis_types[k][0] not in first_type:
                first_type[axis_types[k][0]] = k
            else:
                if pyqtgraph:
                    all_plots[k].plotwindow.setXLink(
                        all_plots[first_type[axis_types[k][0]]].plotwindow)
                else:
                    all_plots[k][0].x_range = all_plots[first_type[
                        axis_types[k][0]]][0].x_range
                    if axis_types[k][1]:
                        all_plots[k][0].y_range = all_plots[first_type[
                            axis_types[k][0]]][0].y_range
            k += 1

    if pyqtgraph:
        pytplot.pytplotWindow.resize(pytplot.tplot_opt_glob['window_size'][0],
                                     pytplot.tplot_opt_glob['window_size'][1])
        pytplot.pytplotWindow.show()
        pytplot.pytplotWindow.activateWindow()
        #Check if we're running in an interactive mode.
        #"ps1" will only be defined if we're running from a command line environment
        if not (hasattr(sys, 'ps1')) or not hasattr(QtCore, 'PYQT_VERSION'):
            QtGui.QApplication.instance().exec_()
    else:
        final = gridplot(all_plots)
        #Output types
        if gui:
            script, div = components(final)
            return script, div
        elif nb:
            output_notebook()
            show(final)
            return
        elif save_file != None:
            output_file(save_file, mode='inline')
            save(final)
            return
        elif qt:
            dir_path = os.path.dirname(os.path.realpath(__file__))
            output_file(os.path.join(dir_path, "temp.html"), mode='inline')
            save(final)
            _generate_bokeh_gui()
            return
        else:
            dir_path = os.path.dirname(os.path.realpath(__file__))
            output_file(os.path.join(dir_path, "temp.html"), mode='inline')
            show(final)
            return