コード例 #1
0
ファイル: fit_test.py プロジェクト: tayral/triqs_0.x
from pytriqs.base.plot.mpl_interface import oplot
from pytriqs.base.gf_local import GfImFreq, Omega, inverse
g = GfImFreq(indices = [1], beta = 300, n_matsubara = 1000, name = "g")
g <<= inverse( Omega + 0.5 )

# the data we want to fit...
# The green function for omega \in [0,0.2]
X,Y = g.x_data_view (x_window = (0,0.2), flatten_y = True )

from pytriqs.base.fit.fit import Fit, linear, quadratic

fitl = Fit ( X,Y.imag, linear )
fitq = Fit ( X,Y.imag, quadratic )

oplot (g,     '-o', x_window = (0,5) )     
oplot (fitl , '-x', x_window = (0,0.5) )
oplot (fitq , '-x', x_window = (0,1) )

# a bit more complex, we want to fit with a one fermion level ....
# Cf the definition of linear and quadratic in the lib
one_fermion_level  =  lambda X, a,b   : 1/(a * X *1j  + b),    r"${1}/(%f x + %f)$"    , (1,1)

fit1 = Fit ( X,Y, one_fermion_level )
oplot (fit1 , '-x', x_window = (0,3) )
    
コード例 #2
0
ファイル: pade.py プロジェクト: tayral/triqs_0.x
L = 101     # Number of Matsubara frequencies used in the Pade approximation
eta = 0.01  # Imaginary frequency shift

## Test Green's functions ##

# Two Lorentzians
def GLorentz(z):
    return 0.7/(z-2.6+0.3*1j) + 0.3/(z+3.4+0.1*1j)

# Semicircle
def GSC(z):
    return 2.0*(z + sqrt(1-z**2)*(log(1-z) - log(-1+z))/pi)

# A superposition of GLorentz(z) and GSC(z) with equal weights
def G(z):
    return 0.5*GLorentz(z) + 0.5*GSC(z)

# Matsubara GF
gm = GfImFreq(indices = [0], beta = beta, name = "gm")
gm <<= Function(G)
gm._tail.zero()
gm._tail[1] = array([[1.0]])

# Analytic continuation of gm
g_pade = GfReFreq(indices = [0], beta = beta, mesh_array = arange(-6,6,0.01), name = "g_pade")
g_pade.set_from_pade(gm, N_Matsubara_Frequencies = L, Freq_Offset = eta)

from pytriqs.base.archive import HDFArchive
R = HDFArchive('pade.output.h5','w')
R['g_pade'] = g_pade
コード例 #3
0
ファイル: ex_Hilbert.py プロジェクト: tayral/triqs_0.x
from pytriqs.base.lattice.tight_binding import *
from pytriqs.base.dos import HilbertTransform
from pytriqs.base.gf_local import GfImFreq

# Define a DOS (here on a square lattice)
BL = BravaisLattice(Units = [(1,0,0) , (0,1,0) ], orbital_positions= {"" :  (0,0,0)} ) 
t   = -1.00                # First neighbour Hopping
tp  =  0.0*t               # Second neighbour Hopping
hop= {  (1,0)  :  [[ t]],       
        (-1,0) :  [[ t]],     
        (0,1)  :  [[ t]],
        (0,-1) :  [[ t]],
        (1,1)  :  [[ tp]],
        (-1,-1):  [[ tp]],
        (1,-1) :  [[ tp]],
        (-1,1) :  [[ tp]]}

TB = TightBinding (BL, hop)
d = dos(TB, n_kpts= 500, n_eps = 101, name = 'dos')[0]

#define a Hilbert transform
H = HilbertTransform(d)

#fill a Green function
G = GfImFreq(indices = ['up','down'], beta = 20)
Sigma0 = GfImFreq(indices = ['up','down'], beta = 20); Sigma0.zero()
G <<= H(Sigma = Sigma0,mu=0.)