コード例 #1
0
ファイル: functions.py プロジェクト: ErVuL/PyTTa
def merge(signal1, *signalObjects):
    """Gather all channels of the signalObjs given as input arguments into a single SignalObj."""
    j = 1
    freqMin = cp.deepcopy(signal1.freqMin)
    freqMax = cp.deepcopy(signal1.freqMax)
    comment = cp.deepcopy(signal1.comment)
    channels = cp.deepcopy(signal1.channels)
    timeSignal = cp.deepcopy(signal1.timeSignal)
    for inObj in signalObjects:
        if signal1.samplingRate != inObj.samplingRate:
            message = '\
            \n To merge signals they must have the same sampling rate!\
            \n SignalObj 1 and ' + str(j +
                                       1) + ' have different sampling rates.'
            raise AttributeError(message)
        if signal1.numSamples != inObj.numSamples:
            message = '\
            \n To merge signals they must have the same length!\
            \n SignalObj 1 and ' + str(j + 1) + ' have different lengths.'
            raise AttributeError(message)
        comment = comment + ' / ' + inObj.comment
        for ch in inObj.channels._channels:
            channels.append(ch)
        timeSignal = np.hstack((timeSignal, inObj.timeSignal))
        j += 1
    newSignal = SignalObj(timeSignal,
                          domain='time',
                          samplingRate=signal1.samplingRate,
                          freqMin=freqMin,
                          freqMax=freqMax,
                          comment=comment)
    channels.conform_to()
    newSignal.channels = channels
    return newSignal
コード例 #2
0
ファイル: functions.py プロジェクト: ErVuL/PyTTa
def __parse_load(className):
    name = className.split('.')[0]
    jsonFile = open(className, 'r')
    openJson = json.load(jsonFile)
    if name == 'SignalObj':
        openMat = sio.loadmat(openJson['timeSignalAddress'])
        out = SignalObj(openMat['timeSignal'],
                        domain=openJson['lengthDomain'],
                        samplingRate=openJson['samplingRate'],
                        freqMin=openJson['freqLims'][0],
                        freqMax=openJson['freqLims'][1],
                        comment=openJson['comment'])
        out.channels = __parse_channels(openJson['channels'], out.channels)
        os.remove(openJson['timeSignalAddress'])

    elif name == 'ImpulsiveResponse':
        ir = pytta_load(openJson['SignalAddress']['ir'])
        out = ImpulsiveResponse(ir=ir, **openJson['methodInfo'])
        os.remove(openJson['SignalAddress']['ir'])

    elif name == 'RecMeasure':
        inch = list(np.arange(len(openJson['inChannels'])))
        out = RecMeasure(device=openJson['device'],
                         inChannels=inch,
                         lengthDomain='samples',
                         fftDegree=openJson['fftDegree'])
        out.inChannels = __parse_channels(openJson['inChannels'],
                                          out.inChannels)

    elif name == 'PlayRecMeasure':
        inch = list(1 + np.arange(len(openJson['inChannels'])))
        excit = pytta_load(openJson['excitationAddress'])
        out = PlayRecMeasure(excitation=excit,
                             device=openJson['device'],
                             inChannels=inch)
        out.inChannels = __parse_channels(openJson['inChannels'],
                                          out.inChannels)
        os.remove(openJson['excitationAddress'])

    elif name == 'FRFMeasure':
        inch = list(1 + np.arange(len(openJson['inChannels'])))
        excit = pytta_load(openJson['excitationAddress'])
        out = FRFMeasure(excitation=excit,
                         device=openJson['device'],
                         inChannels=inch)
        out.inChannels = __parse_channels(openJson['inChannels'],
                                          out.inChannels)
        os.remove(openJson['excitationAddress'])

    elif name == 'Meta':
        out = []
        for val in openJson.values():
            out.append(pytta_load(val))
            os.remove(val)
    os.remove(className)
    jsonFile.close()
    return out
コード例 #3
0
    def filter(self, sigobj):
        """
        Filter the signal object.

        For each channel inside the input signalObj, will be generated a new
        SignalObj with the channel filtered signal.

        Args:
            sigobj: SignalObj

        Return:
            output: List
                A list containing one SignalObj with the filtered data for each
                channel in the original signalObj.

        """
        if self.samplingRate != sigobj.samplingRate:
            raise ValueError(
                "SignalObj must have same sampling rate of filter to be filtered."
            )
        n = self.sos.shape[2]
        output = []
        chl = []
        for ch in range(sigobj.numChannels):
            sobj = sigobj[ch]
            filtered = np.zeros((sobj.numSamples, n))
            for k in range(n):
                cContigousArray = sobj.timeSignal[:].copy(order='C')
                filtered[:, k] = ss.sosfilt(self.sos[:, :, k].copy(order='C'),
                                            cContigousArray,
                                            axis=0).T
                chl.append(copy(sobj.channels[sobj.channels.mapping[0]]))
                chl[-1].num = k + 1
                chl[-1].name = f'Band {k+1}'
                chl[-1].code = f'B{k+1}'
            signalDict = {
                'signalArray': filtered,
                'domain': 'time',
                'samplingRate': self.samplingRate,
                'freqMin': sigobj.freqMin,
                'freqMax': sigobj.freqMax,
            }
            out = SignalObj(**signalDict)
            out.channels = ChannelsList(chl)
            # out.timeSignal = out.timeSignal * out.channels.CFlist()
            output.append(out)
            chl.clear()
        return output
コード例 #4
0
ファイル: functions.py プロジェクト: ErVuL/PyTTa
def __h5_unpack(objH5Group):
    """
    Unpack an HDF5 group into its respective PyTTa object
    """
    if objH5Group.attrs['class'] == 'SignalObj':
        # PyTTaObj attrs unpacking
        samplingRate = objH5Group.attrs['samplingRate']
        freqMin = _h5.none_parser(objH5Group.attrs['freqMin'])
        freqMax = _h5.none_parser(objH5Group.attrs['freqMax'])
        lengthDomain = objH5Group.attrs['lengthDomain']
        comment = objH5Group.attrs['comment']
        # SignalObj attr unpacking
        channels = eval(objH5Group.attrs['channels'])
        # Added with an if for compatibilitie issues
        if 'signalType' in objH5Group.attrs:
            signalType = _h5.attr_parser(objH5Group.attrs['signalType'])
        else:
            signalType = 'power'
        # Creating and conforming SignalObj
        SigObj = SignalObj(signalArray=np.array(objH5Group['timeSignal']),
                           domain='time',
                           signalType=signalType,
                           samplingRate=samplingRate,
                           freqMin=freqMin,
                           freqMax=freqMax,
                           comment=comment)
        SigObj.channels = channels
        SigObj.lengthDomain = lengthDomain
        return SigObj

    elif objH5Group.attrs['class'] == 'ImpulsiveResponse':
        systemSignal = __h5_unpack(objH5Group['systemSignal'])
        method = objH5Group.attrs['method']
        winType = objH5Group.attrs['winType']
        winSize = objH5Group.attrs['winSize']
        overlap = objH5Group.attrs['overlap']
        IR = ImpulsiveResponse(method=method,
                               winType=winType,
                               winSize=winSize,
                               overlap=overlap,
                               ir=systemSignal)
        return IR

    elif objH5Group.attrs['class'] == 'RecMeasure':
        # PyTTaObj attrs unpacking
        samplingRate = objH5Group.attrs['samplingRate']
        freqMin = _h5.none_parser(objH5Group.attrs['freqMin'])
        freqMax = _h5.none_parser(objH5Group.attrs['freqMax'])
        comment = objH5Group.attrs['comment']
        lengthDomain = objH5Group.attrs['lengthDomain']
        fftDegree = objH5Group.attrs['fftDegree']
        timeLength = objH5Group.attrs['timeLength']
        # Measurement attrs unpacking
        device = _h5.list_w_int_parser(objH5Group.attrs['device'])
        inChannels = eval(objH5Group.attrs['inChannels'])
        blocking = objH5Group.attrs['blocking']
        # Recreating the object
        rObj = measurement(kind='rec',
                           device=device,
                           inChannels=inChannels,
                           blocking=blocking,
                           samplingRate=samplingRate,
                           freqMin=freqMin,
                           freqMax=freqMax,
                           comment=comment,
                           lengthDomain=lengthDomain,
                           fftDegree=fftDegree,
                           timeLength=timeLength)
        return rObj

    elif objH5Group.attrs['class'] == 'PlayRecMeasure':
        # PyTTaObj attrs unpacking
        samplingRate = objH5Group.attrs['samplingRate']
        freqMin = _h5.none_parser(objH5Group.attrs['freqMin'])
        freqMax = _h5.none_parser(objH5Group.attrs['freqMax'])
        comment = objH5Group.attrs['comment']
        lengthDomain = objH5Group.attrs['lengthDomain']
        fftDegree = objH5Group.attrs['fftDegree']
        timeLength = objH5Group.attrs['timeLength']
        # Measurement attrs unpacking
        device = _h5.list_w_int_parser(objH5Group.attrs['device'])
        inChannels = eval(objH5Group.attrs['inChannels'])
        outChannels = eval(objH5Group.attrs['outChannels'])
        blocking = objH5Group.attrs['blocking']
        # PlayRecMeasure attrs unpacking
        excitation = __h5_unpack(objH5Group['excitation'])
        outputAmplification = objH5Group.attrs['outputAmplification']
        # Recreating the object
        prObj = measurement(kind='playrec',
                            excitation=excitation,
                            outputAmplification=outputAmplification,
                            device=device,
                            inChannels=inChannels,
                            outChannels=outChannels,
                            blocking=blocking,
                            samplingRate=samplingRate,
                            freqMin=freqMin,
                            freqMax=freqMax,
                            comment=comment)
        return prObj

    elif objH5Group.attrs['class'] == 'FRFMeasure':
        # PyTTaObj attrs unpacking
        samplingRate = objH5Group.attrs['samplingRate']
        freqMin = _h5.none_parser(objH5Group.attrs['freqMin'])
        freqMax = _h5.none_parser(objH5Group.attrs['freqMax'])
        comment = objH5Group.attrs['comment']
        lengthDomain = objH5Group.attrs['lengthDomain']
        fftDegree = objH5Group.attrs['fftDegree']
        timeLength = objH5Group.attrs['timeLength']
        # Measurement attrs unpacking
        device = _h5.list_w_int_parser(objH5Group.attrs['device'])
        inChannels = eval(objH5Group.attrs['inChannels'])
        outChannels = eval(objH5Group.attrs['outChannels'])
        blocking = objH5Group.attrs['blocking']
        # PlayRecMeasure attrs unpacking
        excitation = __h5_unpack(objH5Group['excitation'])
        outputAmplification = objH5Group.attrs['outputAmplification']
        # FRFMeasure attrs unpacking
        method = _h5.none_parser(objH5Group.attrs['method'])
        winType = _h5.none_parser(objH5Group.attrs['winType'])
        winSize = _h5.none_parser(objH5Group.attrs['winSize'])
        overlap = _h5.none_parser(objH5Group.attrs['overlap'])
        # Recreating the object
        frfObj = measurement(kind='frf',
                             method=method,
                             winType=winType,
                             winSize=winSize,
                             overlap=overlap,
                             excitation=excitation,
                             outputAmplification=outputAmplification,
                             device=device,
                             inChannels=inChannels,
                             outChannels=outChannels,
                             blocking=blocking,
                             samplingRate=samplingRate,
                             freqMin=freqMin,
                             freqMax=freqMax,
                             comment=comment)
        return frfObj

    elif objH5Group.attrs['class'] == 'Analysis':
        # Analysis attrs unpacking
        anType = _h5.attr_parser(objH5Group.attrs['anType'])
        nthOct = _h5.attr_parser(objH5Group.attrs['nthOct'])
        minBand = _h5.attr_parser(objH5Group.attrs['minBand'])
        maxBand = _h5.attr_parser(objH5Group.attrs['maxBand'])
        comment = _h5.attr_parser(objH5Group.attrs['comment'])
        title = _h5.attr_parser(objH5Group.attrs['title'])
        dataLabel = _h5.attr_parser(objH5Group.attrs['dataLabel'])
        errorLabel = _h5.attr_parser(objH5Group.attrs['errorLabel'])
        xLabel = _h5.attr_parser(objH5Group.attrs['xLabel'])
        yLabel = _h5.attr_parser(objH5Group.attrs['yLabel'])
        # Analysis data unpacking
        data = np.array(objH5Group['data'])
        # If error in save moment was None no group was created for it
        if 'error' in objH5Group:
            error = np.array(objH5Group['error'])
        else:
            error = None
        # Recreating the object
        anObject = Analysis(anType=anType,
                            nthOct=nthOct,
                            minBand=minBand,
                            maxBand=maxBand,
                            data=data,
                            dataLabel=dataLabel,
                            error=error,
                            errorLabel=errorLabel,
                            comment=comment,
                            xLabel=xLabel,
                            yLabel=yLabel,
                            title=title)
        return anObject

    elif objH5Group.attrs['class'] == 'dict':
        dictObj = {}
        for PyTTaObjName, PyTTaObjH5Group in objH5Group.items():
            dictObj[PyTTaObjName] = __h5_unpack(PyTTaObjH5Group)
        return dictObj

    elif objH5Group.attrs['class'] == 'list':
        dictObj = {}
        for idx, PyTTaObjH5Group in objH5Group.items():
            dictObj[int(idx)] = __h5_unpack(PyTTaObjH5Group)
        idxs = [int(item) for item in list(dictObj.keys())]
        maxIdx = max(idxs)
        listObj = []
        for idx in range(maxIdx + 1):
            listObj.append(dictObj[idx])
        return listObj

    else:
        raise NotImplementedError