コード例 #1
0
ファイル: frame_gen.py プロジェクト: Tjstretchalot/pympanim
 def __init__(self,
              child: FrameGenerator,
              dilator: Easing,
              dilator_kwargs: typing.Optional[dict] = None):
     tus.check(child=(child, FrameGenerator),
               dilator_kwargs=(dilator_kwargs, (dict, type(None))))
     tus.check_callable(dilator=dilator)
     self.child = child
     self.dilator = dilator
     self.dilator_kwargs = (dilator_kwargs
                            if dilator_kwargs is not None else dict())
コード例 #2
0
ファイル: acts.py プロジェクト: Tjstretchalot/pympanim
 def __init__(self,
              child: Scene,
              dilator: Easing,
              dilator_kwargs: dict = None):
     tus.check(child=(child, Scene),
               dilator_kwargs=(dilator_kwargs, (dict, type(None))))
     tus.check_callable(dilator=dilator)
     self.dilator = dilator
     self.dilator_kwargs = (dict()
                            if dilator_kwargs is None else dilator_kwargs)
     self.child = child
コード例 #3
0
ファイル: acts.py プロジェクト: Tjstretchalot/pympanim
    def dilate(self,
               dilator: Easing,
               dilator_kwargs: typing.Optional[dict] = None) -> 'FluentScene':
        """Transforms time according to the given easing.

        Args:
            dilator (Easing): The rule for manipulating time
            dilator_kwargs (dict, optional): Arguments to the dilator.
        """
        tus.check(dilator_kwargs=(dilator_kwargs, (dict, type(None))))
        tus.check_callable(dilator=dilator)

        return self.apply(TimeDilateScene, dilator, dilator_kwargs)
コード例 #4
0
ファイル: frame_gen.py プロジェクト: Tjstretchalot/pympanim
    def dilate(self,
               dilator: Easing,
               dilator_kwargs: typing.Optional[dict] = None) -> 'FluentFG':
        """Rescales time for the current frame generator to be rescaled by
        the given dilator.

        Args:
            dilator (Easing): the rule for changing time
            dilator_kwargs (typing.Optional[dict]): if specified, the keyword
                arguments to the dilator
        """
        tus.check(dilator_kwargs=(dilator_kwargs, (dict, type(None))))
        tus.check_callable(dilator=dilator)

        return self.apply(TimeDilateFrameGenerator, dilator, dilator_kwargs)
コード例 #5
0
ファイル: frame_gen.py プロジェクト: Tjstretchalot/pympanim
    def apply(self, transform: typing.Callable, *args, **kwargs) -> 'FluentFG':
        """Applies the given transformation to the currently build frame
        generator, using the given arguments

        Args:
            transform (typing.Callable): Must accept FrameGenerator, *args,
                **kwargs and return a FrameGenerator
        """
        tus.check_callable(transform=transform)
        if self.followed_by:
            self.base = self.build()
            self.followed_by = []

        self.base = transform(self.base, *args, **kwargs)
        tus.check(transform_result=(self.base, FrameGenerator))
        return self
コード例 #6
0
def forward_with(fc_layers, norms, learning, inp, acts_cb):
    """Applies the forward pass to the given input data using the given
    fully connected layers and norms. If learning is set, it is invoked
    prior to the norms.

    Args:
        fc_layers (list[nn.Linear]): the three linear layers in the order they are invoked
        norms (list[nn.BatchNorm1d]): Or equivalent callables.
        learning (list[LearningAbsoluteNormLayer], optional): learning absolute norms or None
        inp (torch.tensor[batch_size, encode_dim]): the encoded game state
        acts_cb (callable, optional): passed FFHiddenActivations 4 times at times 0-3 respectively
    """
    tus.check_tensors(inp=(inp, (('batch', None), ('input_dim', ENCODE_DIM)),
                           torch.float32))
    if acts_cb:
        tus.check_callable(acts_cb=acts_cb)
        acts_cb(FFHiddenActivations(layer=0, hidden_acts=inp))

    if learning:
        learning[0](inp)
    res = norms[0](inp)
    res = fc_layers[0](res)
    res = torch.tanh(res)
    if learning:
        learning[1](res)
    res = norms[1](res)
    if acts_cb:
        acts_cb(FFHiddenActivations(layer=1, hidden_acts=res))
    res = fc_layers[1](res)
    res = torch.tanh(res)
    if learning:
        learning[2](res)
    res = norms[2](res)
    if acts_cb:
        acts_cb(FFHiddenActivations(layer=2, hidden_acts=res))
    res = fc_layers[2](res)
    res = torch.tanh(res)
    if acts_cb:
        acts_cb(FFHiddenActivations(layer=3, hidden_acts=res))
    return res
コード例 #7
0
 def __init__(self, child, transform):
     tus.check(child=(child, Token))
     tus.check_callable(transform=transform)
     self.child = child
     self.transform = transform
コード例 #8
0
 def test_checkcallable_lambda_pass(self):
     tus.check_callable(a=lambda x: True)
コード例 #9
0
    def test_checkcallable_function_pass(self):
        def foo():
            pass

        tus.check_callable(a=foo)
コード例 #10
0
 def tests_checkcallable_int_fail(self):
     with self.assertRaises(ValueError):
         tus.check_callable(a=5)
コード例 #11
0
 def test_checkcallable_class_pass(self):
     tus.check_callable(a=TestCheckCallableMethod)
コード例 #12
0
 def test_checkcallable_noarg_pass(self):
     tus.check_callable()
コード例 #13
0
    def __init__(self, stop_failer: typing.Callable, max_out_len: int):
        tus.check(max_out_len=(max_out_len, int))
        tus.check_callable(stop_failer=stop_failer)

        self.max_out_len = max_out_len
        self.stop_failer = stop_failer