コード例 #1
0
    def composePSD(self, psd1, psd2, outputFn,
                   outputFnUncorrected=None, outputFnCorrected=None):
        """ Compose a single PSD image:
         left part from psd1 (uncorrected PSD),
         right-part from psd2 (corrected PSD)
        """
        ih = ImageHandler()
        psdImg1 = ih.read(psd1)
        data1 = psdImg1.getData()

        if outputFnUncorrected is not None:
            psdImg1.convertPSD()
            psdImg1.write(outputFnUncorrected)

        psdImg2 = ih.read(psd2)
        data2 = psdImg2.getData()

        if outputFnCorrected is not None:
            psdImg2.convertPSD()
            psdImg2.write(outputFnCorrected)

        # Compute middle index
        x, _, _, _ = psdImg1.getDimensions()
        m = int(round(x / 2.))
        data1[:, :m] = data2[:, :m]
        psdImg1.setData(data1)
        psdImg1.write(outputFn)
コード例 #2
0
 def composePSD(self, psd1, psd2, outputFn):
     """ Compose a single PSD image:
      left part from psd1 (corrected PSD),
      right-part from psd2 (uncorrected PSD)
     """
     ih = ImageHandler()
     psd = ih.read(psd1)
     data1 = psd.getData()
     data2 = ih.read(psd2).getData()
     # Compute middle index
     x, _, _, _ = psd.getDimensions()
     m = int(round(x / 2.))
     data1[:, m:] = data2[:, m:]
     psd.setData(data1)
     psd.write(outputFn)
コード例 #3
0
    def _buildDendrogram(self, leftIndex, rightIndex, index, writeAverages=False, level=0):
        """ This function is recursively called to create the dendogram graph(binary tree)
        and also to write the average image files.
        Params:
            leftIndex, rightIndex: the indinxes within the list where to search.
            index: the index of the class average.
            writeImages: flag to select when to write averages.
        From self:
            self.dendroValues: the list with the heights of each node
            self.dendroImages: image stack filename to read particles
            self.dendroAverages: stack name where to write averages
        It will search for the max in values list (between minIndex and maxIndex).
        Nodes to the left of the max are left childs and the other right childs.
        """
        maxValue = self.dendroValues[leftIndex]
        maxIndex = 0
        for i, v in enumerate(self.dendroValues[leftIndex+1:rightIndex]):
            if v > maxValue:
                maxValue = v
                maxIndex = i+1
        
        m = maxIndex + leftIndex
        node = DendroNode(index, maxValue)
        
        ih = ImageHandler()

        particleNumber = self.dendroIndexes[m+1]
        node.imageList = [particleNumber]
        
        if writeAverages:
            node.image = ih.read((particleNumber, self.dendroImages))
            
        def addChildNode(left, right, index):
            if right > left:
                child = self._buildDendrogram(left, right, index, writeAverages, level+1)
                node.addChild(child)
                node.length += child.length
                node.imageList += child.imageList
                
                if writeAverages:
                    node.image += child.image
                    del child.image # Allow to free child image memory
                
        if rightIndex > leftIndex + 1 and level < self.dendroMaxLevel:
            addChildNode(leftIndex, m, 2*index)
            addChildNode(m+1, rightIndex, 2*index+1)
            node.avgCount = self.dendroAverageCount + 1
            self.dendroAverageCount += 1
            node.path = '%d@%s' % (node.avgCount, self.dendroAverages)
            if writeAverages:
                #TODO: node['image'] /= float(node['length'])
                #node.image.inplaceDivide(float(node.length)) #FIXME: not working, noisy images
                avgImage = node.image / float(node.length)
                ih.write(avgImage, (node.avgCount, self.dendroAverages))
                fn = self._getTmpPath('doc_class%03d.stk' % index)
                doc = SpiderDocFile(fn, 'w+')
                for i in node.imageList:
                    doc.writeValues(i)
                doc.close()
        return node
コード例 #4
0
    def generateReportImages(self, firstThumbIndex=0, micScaleFactor=6):
        """ Function to generate thumbnails for the report. Uses data from
        self.thumbPaths.

        ===== Params =====
        - firstThumbIndex: index from which we start generating thumbnails
        - micScaleFactor: how much to reduce in size the micrographs.

        """
        ih = ImageHandler()

        numMics = len(self.thumbPaths[MIC_PATH])

        for i in range(firstThumbIndex, numMics):
            print('Generating images for mic %d' % (i + 1))
            # mic thumbnails
            dstImgPath = join(self.reportDir, self.thumbPaths[MIC_THUMBS][i])
            if not exists(dstImgPath):
                if self.micThumbSymlinks:
                    pwutils.createAbsLink(self.thumbPaths[MIC_PATH][i],
                                          dstImgPath)
                else:
                    ih.computeThumbnail(self.thumbPaths[MIC_PATH][i],
                                        dstImgPath,
                                        scaleFactor=micScaleFactor)

            # shift plots
            if SHIFT_THUMBS in self.thumbPaths:
                dstImgPath = join(self.reportDir,
                                  self.thumbPaths[SHIFT_THUMBS][i])
                if not exists(dstImgPath):
                    pwutils.createAbsLink(self.thumbPaths[SHIFT_PATH][i],
                                          dstImgPath)

            # Psd thumbnails
            if self.ctfProtocol is None:
                srcImgPath = self.thumbPaths[PSD_PATH][i]
                dstImgPath = join(self.reportDir,
                                  self.thumbPaths[PSD_THUMBS][i])
                if not exists(dstImgPath):
                    if srcImgPath.endswith('psd'):
                        psdImg1 = ih.read(srcImgPath)
                        psdImg1.convertPSD()
                        psdImg1.write(dstImgPath)
                        ih.computeThumbnail(dstImgPath,
                                            dstImgPath,
                                            scaleFactor=1)
                    else:
                        pwutils.createAbsLink(srcImgPath, dstImgPath)
            else:
                dstImgPath = join(self.reportDir,
                                  self.thumbPaths[PSD_THUMBS][i])
                if not exists(dstImgPath):
                    ih.computeThumbnail(self.thumbPaths[PSD_PATH][i],
                                        dstImgPath,
                                        scaleFactor=1)

        return
コード例 #5
0
ファイル: report_html.py プロジェクト: I2PC/scipion
    def generateReportImages(self, firstThumbIndex=0, micScaleFactor=6):
        """ Function to generate thumbnails for the report. Uses data from
        self.thumbPaths.

        ===== Params =====
        - firstThumbIndex: index from which we start generating thumbnails
        - micScaleFactor: how much to reduce in size the micrographs.

        """
        ih = ImageHandler()

        numMics = len(self.thumbPaths[MIC_PATH])

        for i in range(firstThumbIndex, numMics):
            print('Generating images for mic %d' % (i+1))
            # mic thumbnails
            dstImgPath = join(self.reportDir, self.thumbPaths[MIC_THUMBS][i])
            if not exists(dstImgPath):
                if self.micThumbSymlinks:
                    pwutils.createAbsLink(self.thumbPaths[MIC_PATH][i], dstImgPath)
                else:
                    ih.computeThumbnail(self.thumbPaths[MIC_PATH][i],
                                        dstImgPath, scaleFactor=micScaleFactor,
                                        flipOnY=True)

            # shift plots
            if SHIFT_THUMBS in self.thumbPaths:
                dstImgPath = join(self.reportDir, self.thumbPaths[SHIFT_THUMBS][i])
                if not exists(dstImgPath):
                    pwutils.createAbsLink(self.thumbPaths[SHIFT_PATH][i], dstImgPath)

            # Psd thumbnails
            # If there ARE thumbnail for the PSD (no ctf protocol and
            # moviealignment hasn't computed it
            if PSD_THUMBS in self.thumbPaths:
                if self.ctfProtocol is None:
                    srcImgPath = self.thumbPaths[PSD_PATH][i]
                    dstImgPath = join(self.reportDir, self.thumbPaths[PSD_THUMBS][i])
                    if not exists(dstImgPath) and srcImgPath is not None:
                        if srcImgPath.endswith('psd'):
                            psdImg1 = ih.read(srcImgPath)
                            psdImg1.convertPSD()
                            psdImg1.write(dstImgPath)
                            ih.computeThumbnail(dstImgPath, dstImgPath,
                                                scaleFactor=1, flipOnY=True)
                        else:
                            pwutils.createAbsLink(srcImgPath, dstImgPath)
                else:
                    dstImgPath = join(self.reportDir, self.thumbPaths[PSD_THUMBS][i])
                    if not exists(dstImgPath):
                        ih.computeThumbnail(self.thumbPaths[PSD_PATH][i],
                                            dstImgPath, scaleFactor=1, flipOnY=True)

        return
コード例 #6
0
ファイル: wizard.py プロジェクト: josegutab/scipion
    def _computeRightPreview(self):
        """ This function should compute the right preview
        using the self.lastObj that was selected
        """
        from pyworkflow.em.packages.xmipp3 import locationToXmipp
        
        # Copy image to filter to Tmp project folder
        outputName = os.path.join("Tmp", "filtered_particle")
        outputPath = outputName + ".spi"
        cleanPath(outputPath)

        outputLoc = (1, outputPath)
        ih = ImageHandler()
        ih.convert(self.lastObj.getLocation(), outputLoc) 
                
        outputLocSpiStr = locationToSpider(1, outputName)
        
        pars = {}
        pars["filterType"] = self.protocolParent.filterType.get()
        pars["filterMode"] = self.protocolParent.filterMode.get()
        pars["usePadding"] = self.protocolParent.usePadding.get()
        pars["op"] = "FQ"
        
        if self.protocolParent.filterType <= FILTER_SPACE_REAL:
            pars['filterRadius'] = self.getRadius()
        else:
            pars['lowFreq'] = self.getLowFreq()
            pars['highFreq'] = self.getHighFreq()
            
        if self.protocolParent.filterType == FILTER_FERMI:
            pars['temperature'] = self.getTemperature()

        filter_spider(outputLocSpiStr, outputLocSpiStr, **pars)
        
        # Get output image and update filtered image
        img = ImageHandler()._img
        locXmippStr = locationToXmipp(1, outputPath)
        img.read(locXmippStr)
        self.rightImage = img
        self.updateFilteredImage()
コード例 #7
0
    def _computeRightPreview(self):
        """ This function should compute the right preview
        using the self.lastObj that was selected
        """
        from pyworkflow.em.packages.xmipp3 import locationToXmipp

        # Copy image to filter to Tmp project folder
        outputName = os.path.join("Tmp", "filtered_particle")
        outputPath = outputName + ".spi"
        cleanPath(outputPath)

        outputLoc = (1, outputPath)
        ih = ImageHandler()
        ih.convert(self.lastObj.getLocation(), outputLoc)

        outputLocSpiStr = locationToSpider(1, outputName)

        pars = {}
        pars["filterType"] = self.protocolParent.filterType.get()
        pars["filterMode"] = self.protocolParent.filterMode.get()
        pars["usePadding"] = self.protocolParent.usePadding.get()
        pars["op"] = "FQ"

        if self.protocolParent.filterType <= FILTER_FERMI:
            pars['filterRadius'] = self.getRadius()
        else:
            pars['lowFreq'] = self.getLowFreq()
            pars['highFreq'] = self.getHighFreq()

        if self.protocolParent.filterType == FILTER_FERMI:
            pars['temperature'] = self.getTemperature()

        filter_spider(outputLocSpiStr, outputLocSpiStr, **pars)

        # Get output image and update filtered image
        img = ImageHandler()._img
        locXmippStr = locationToXmipp(1, outputPath)
        img.read(locXmippStr)
        self.rightImage = img
        self.updateFilteredImage()
コード例 #8
0
    def createOutputStep(self):
        # Really load the input, since in the streaming case we can not
        # use the self.inputMovies directly
        allFramesSum = self._getPath('all_frames_sum.mrc')
        allFramesAvg = self._getPath('all_frames_avg.mrc')
        self._loadInputList()
        n = len(self.listOfMovies)

        ih = ImageHandler()
        sumImg = ih.read(allFramesSum)
        sumImg.inplaceDivide(float(n))
        sumImg.write(allFramesAvg)

        outputAvg = Image()
        outputAvg.setFileName(allFramesAvg)
        outputAvg.setSamplingRate(self.listOfMovies[0].getSamplingRate())
        self._defineOutputs(outputAverage=outputAvg)
        self._defineSourceRelation(self.inputMovies, outputAvg)
コード例 #9
0
class SpiderProtClassifyCluster(SpiderProtClassify):
    """ Base for Clustering Spider classification protocols.
    """
    def __init__(self, script, classDir, **kwargs):
        SpiderProtClassify.__init__(self, script, classDir, **kwargs)

    #--------------------------- STEPS functions ------------------------------
       
    def createOutputStep(self):
        self.buildDendrogram(True)
         
    #--------------------------- UTILS functions ------------------------------
    
    def _fillClassesFromNodes(self, classes2D, nodeList):
        """ Create the SetOfClasses2D from the images of each node
        in the dendrogram.
        """
        particles = classes2D.getImages()
        sampling = classes2D.getSamplingRate()

        # We need to first create a map between the particles index and
        # the assigned class number
        classDict = {}
        nodeDict = {}
        classCount = 0
        for node in nodeList:
            if node.path:
                classCount += 1
                node.classId = classCount
                nodeDict[classCount] = node
                for i in node.imageList:
                    classDict[int(i)] = classCount

        def updateItem(p, i):
            classId = classDict.get(i, None)
            if classId is None:
                p._appendItem = False
            else:
                p.setClassId(classId)

        def updateClass(cls):
            node = nodeDict[cls.getObjId()]
            rep = cls.getRepresentative()
            rep.setSamplingRate(sampling)
            rep.setLocation(node.avgCount, self.dendroAverages)

        particlesRange = range(1, particles.getSize()+1)

        classes2D.classifyItems(updateItemCallback=updateItem,
                                updateClassCallback=updateClass,
                                itemDataIterator=iter(particlesRange))
                
    def _fillParticlesFromNodes(self, inputParts, outputParts, nodeList):
        """ Create the SetOfClasses2D from the images of each node
        in the dendrogram.
        """
        allImages = set()
        for node in nodeList:
            if node.path:
                for i in node.imageList:
                    allImages.add(i)

        def updateItem(item, index):
            item._appendItem = index in allImages

        particlesRange = range(1, inputParts.getSize()+1)

        outputParts.copyItems(inputParts,
                              updateItemCallback=updateItem,
                              itemDataIterator=iter(particlesRange))

    def buildDendrogram(self, writeAverages=False):
        """ Parse Spider docfile with the information to build the dendrogram.
        Params:
            writeAverages: whether to write class averages or not.
        """
        dendroFile = self._getFileName('dendroDoc')
        # Dendrofile is a docfile with at least 3 data colums (class, height, id)
        doc = SpiderDocFile(dendroFile)
        values = []
        indexes = []
        for _, h, i in doc.iterValues():
            indexes.append(i)
            values.append(h)
        doc.close()
        
        self.dendroValues = values
        self.dendroIndexes = indexes
        self.dendroImages = self._getFileName('particles')
        self.dendroAverages = self._getFileName('averages')
        self.dendroAverageCount = 0 # Write only the number of needed averages
        self.dendroMaxLevel = 10 # FIXME: remove hard coding if working the levels
        self.ih = ImageHandler()

        return self._buildDendrogram(0, len(values)-1, 1, writeAverages)

    def getImage(self, particleNumber):
        return self.ih.read((particleNumber, self.dendroImages))
        
    def addChildNode(self, node, leftIndex, rightIndex, index,
                     writeAverages, level, searchStop):
        child = self._buildDendrogram(leftIndex, rightIndex, index,
                                      writeAverages, level+1, searchStop)
        node.addChild(child)
        node.extendImageList(child.imageList)

        if writeAverages:
            node.addImage(child.image)
            del child.image # Allow to free child image memory
                
    def _buildDendrogram(self, leftIndex, rightIndex, index,
                         writeAverages=False, level=0, searchStop=0):
        """ This function is recursively called to create the dendrogram
        graph (binary tree) and also to write the average image files.
        Params:
            leftIndex, rightIndex: the indexes within the list where to search.
            index: the index of the class average.
            writeAverages: flag to select when to write averages
            searchStop: this could be 1, means that we will search until the
                last element (used for right childs of the dendrogram or,
                can be 0, meaning that the last element was already the max
                (used for left childs )
        From self:
            self.dendroValues: the list with the heights of each node
            self.dendroImages: image stack filename to read particles
            self.dendroAverages: stack name where to write averages
        It will search for the max in values list (between minIndex and maxIndex).
        Nodes to the left of the max are left childs and the other right childs.
        """
        if level < self.dendroMaxLevel:
            avgCount = self.dendroAverageCount + 1
            self.dendroAverageCount += 1
                    
        if rightIndex == leftIndex: # Just only one element
            height = self.dendroValues[leftIndex]
            node = DendroNode(index, height)
            node.extendImageList([self.dendroIndexes[leftIndex]])
            node.addImage(self.getImage(node.imageList[0]))

        elif rightIndex == leftIndex + 1: # Two elements
            height = max(self.dendroValues[leftIndex], 
                         self.dendroValues[rightIndex])
            node = DendroNode(index, height)
            node.extendImageList([self.dendroIndexes[leftIndex],
                                  self.dendroIndexes[rightIndex]])
            node.addImage(self.getImage(node.imageList[0]),
                          self.getImage(node.imageList[1]))
        else: # 3 or more elements
            # Find the max value (or height) of the elements
            maxValue = self.dendroValues[leftIndex]
            maxIndex = 0
            # searchStop could be 0 (do not consider last element, coming from
            # left child, or 1 (consider also the last one, coming from right)
            values = self.dendroValues[leftIndex+1:rightIndex+searchStop]
            for i, v in enumerate(values):
                if v > maxValue:
                    maxValue = v
                    maxIndex = i+1
            m = maxIndex + leftIndex
            node = DendroNode(index, maxValue)
            hasRightChild = m < rightIndex

            if maxValue > 0:
                nextIndex = 2 * index if hasRightChild else index
                self.addChildNode(node, leftIndex, m, nextIndex,
                                  writeAverages, level, 0)

                if hasRightChild:
                    self.addChildNode(node, m+1, rightIndex, 2 * index + 1,
                                      writeAverages, level, 1)
                else:
                    # If the node has a single child, we will remove a node
                    # just to advance in the level of the tree to get more
                    # different class averages
                    if node.getChilds():
                        child = node.getChilds()[0]
                        child.image = node.image
                        child.parents = []
                        node = child
            else:
                node.extendImageList(self.dendroIndexes[leftIndex:rightIndex+1])
                node.addImage(*[self.getImage(img) for img in node.imageList])

        if level < self.dendroMaxLevel:
            node.avgCount = avgCount
            node.path = '%d@%s' % (node.avgCount, self.dendroAverages)
            
            if writeAverages:
                # normalize the sum of images depending on the number of particles
                # assigned to this classes
                avgImage = node.image / float(node.getSize()) 
                self.ih.write(avgImage, (node.avgCount, self.dendroAverages))
                fn = self._getTmpPath('doc_class%03d.stk' % index)
                doc = SpiderDocFile(fn, 'w+')
                for i in node.imageList:
                    doc.writeValues(i)
                doc.close()
                
        return node
コード例 #10
0
class SpiderProtClassifyCluster(SpiderProtClassify):
    """ Base for Clustering Spider classification protocols.
    """
    def __init__(self, script, classDir, **kwargs):
        SpiderProtClassify.__init__(self, script, classDir, **kwargs)

    #--------------------------- STEPS functions --------------------------------------------    
       
    def createOutputStep(self):
        self.buildDendrogram(True)
         
    #--------------------------- UTILS functions --------------------------------------------
    
    def _fillClassesFromNodes(self, classes, nodeList):
        """ Create the SetOfClasses2D from the images of each node
        in the dendogram. 
        """
        img = Particle()
        sampling = classes.getSamplingRate()
        
        for node in nodeList:
            if node.path:
                #print "node.path: ", node.path
                class2D = Class2D()
                avg = Particle()
                #avg.copyObjId(class2D)
                avg.setLocation(node.avgCount, self.dendroAverages)
                avg.setSamplingRate(sampling)
                
                class2D.setRepresentative(avg)
                class2D.setSamplingRate(sampling)
                classes.append(class2D)
                #print "class2D.id: ", class2D.getObjId()
                for i in node.imageList:
                    #img.setObjId(i) # FIXME: this is wrong if the id is different from index
                    img.cleanObjId()
                    img.setLocation(int(i), self.dendroImages)
                    class2D.append(img)
                
                classes.update(class2D)
                
                
    def _fillParticlesFromNodes(self, particles, nodeList):
        """ Create the SetOfClasses2D from the images of each node
        in the dendogram. 
        """
        img = Particle()
        
        for node in nodeList:
            if node.path:
                for i in node.imageList:
                    #img.setObjId(i) # FIXME: this is wrong if the id is different from index
                    img.cleanObjId()
                    img.setLocation(int(i), self.dendroImages)
                    particles.append(img)
                
        
    def buildDendrogram(self, writeAverages=False):
        """ Parse Spider docfile with the information to build the dendogram.
        Params:
            dendroFile: docfile with a row per image. 
                 Each row contains the image id and the height.
        """ 
        dendroFile = self._getFileName('dendroDoc')
        # Dendrofile is a docfile with at least 3 data colums (class, height, id)
        doc = SpiderDocFile(dendroFile)
        values = []
        indexes = []
        for c, h, _ in doc.iterValues(): 
            indexes.append(c)
            values.append(h)
        doc.close()
        
        self.dendroValues = values
        self.dendroIndexes = indexes
        self.dendroImages = self._getFileName('particles')
        self.dendroAverages = self._getFileName('averages')
        self.dendroAverageCount = 0 # Write only the number of needed averages
        self.dendroMaxLevel = 10 # FIXME: remove hard coding if working the levels
        self.ih = ImageHandler()
        
        return self._buildDendrogram(0, len(values)-1, 1, writeAverages)
    
    def getImage(self, particleNumber):
        return self.ih.read((particleNumber, self.dendroImages))
        
    def addChildNode(self, node, leftIndex, rightIndex, index, writeAverages, level):
        child = self._buildDendrogram(leftIndex, rightIndex, index, writeAverages, level+1)
        node.addChild(child)
        node.length += child.length
        node.imageList += child.imageList
        
        if writeAverages:
            if node.image is None:
                node.image = child.image
            else:
                node.image += child.image
            del child.image # Allow to free child image memory
                
    def _buildDendrogram(self, leftIndex, rightIndex, index, writeAverages=False, level=0):
        """ This function is recursively called to create the dendogram graph(binary tree)
        and also to write the average image files.
        Params:
            leftIndex, rightIndex: the indinxes within the list where to search.
            index: the index of the class average.
            writeImages: flag to select when to write averages.
        From self:
            self.dendroValues: the list with the heights of each node
            self.dendroImages: image stack filename to read particles
            self.dendroAverages: stack name where to write averages
        It will search for the max in values list (between minIndex and maxIndex).
        Nodes to the left of the max are left childs and the other right childs.
        """
        if level < self.dendroMaxLevel:
            avgCount = self.dendroAverageCount + 1
            self.dendroAverageCount += 1
                    
        if rightIndex == leftIndex: # Just only one element
            height = self.dendroValues[leftIndex]
            node = DendroNode(index, height)
            node.imageList = [self.dendroIndexes[leftIndex]]
            node.image = self.getImage(node.imageList[0])
            node.length = 1
        
        elif rightIndex == leftIndex + 1: # Two elements
            height = max(self.dendroValues[leftIndex], 
                         self.dendroValues[rightIndex])
            node = DendroNode(index, height)
            node.imageList = [self.dendroIndexes[leftIndex],
                              self.dendroIndexes[rightIndex]]
            node.image = self.getImage(node.imageList[0]) + self.getImage(node.imageList[1])
            node.length = 2
        else: # 3 or more elements
            # Find the max value (or height) of the elements
            maxValue = self.dendroValues[leftIndex]
            maxIndex = 0
            for i, v in enumerate(self.dendroValues[leftIndex+1:rightIndex]):
                if v > maxValue:
                    maxValue = v
                    maxIndex = i+1
            m = maxIndex + leftIndex
            node = DendroNode(index, maxValue)
            
            self.addChildNode(node, leftIndex, m, 2*index, writeAverages, level)
            self.addChildNode(node, m+1, rightIndex, 2*index+1, writeAverages, level)
            
        if level < self.dendroMaxLevel:
            node.avgCount = avgCount
            node.path = '%d@%s' % (node.avgCount, self.dendroAverages)
            
            if writeAverages:
                # normalize the sum of images depending on the number of particles
                # assigned to this classes
                avgImage = node.image / float(node.getSize()) 
                self.ih.write(avgImage, (node.avgCount, self.dendroAverages))
                fn = self._getTmpPath('doc_class%03d.stk' % index)
                doc = SpiderDocFile(fn, 'w+')
                for i in node.imageList:
                    doc.writeValues(i)
                doc.close()
                
        return node
コード例 #11
0
    def createOutputStep(self):

        ih = ImageHandler()
        outputStack = self._getPath('particles.mrcs')
        outputImg = ih.createImage()

        inputParticles = self.inputParticles.get()
        inputCoords = self.inputCoordinates.get()
        outputSet = self._createSetOfParticles()
        outputSet.copyInfo(inputParticles)

        boxSize = self.boxSize.get()
        b2 = int(round(boxSize / 2))
        center = np.zeros((boxSize, boxSize))

        ih = ImageHandler()

        i = 0
        outliers = 0
        partIdExcluded = []
        lastPartId = None

        for coord in inputCoords.iterItems(
                orderBy=['_subparticle._micId', '_micId', 'id']):
            # The original particle id is stored in the sub-particle as micId
            partId = coord._micId.get()

            # Load the particle if it has changed from the last sub-particle
            if partId != lastPartId:
                particle = inputParticles[partId]

                if particle is None:
                    partIdExcluded.append(partId)
                    self.info("WARNING: Missing particle with id %s from "
                              "input particles set" % partId)
                else:
                    # Now load the particle image to extract later sub-particles
                    img = ih.read(particle)
                    x, y, _, _ = img.getDimensions()
                    data = img.getData()

                lastPartId = partId

            # If particle is not in inputParticles, subparticles will not be
            # generated. Now, subtract from a subset of original particles is
            # supported.
            if not partId in partIdExcluded:
                xpos = coord.getX()
                ypos = coord.getY()

                # Check that the sub-particle will not lay out of the particle
                if (ypos - b2 < 0 or ypos + b2 > y or xpos - b2 < 0
                        or xpos + b2 > x):
                    outliers += 1
                    continue

                # Crop the sub-particle data from the whole particle image
                center[:, :] = data[ypos - b2:ypos + b2, xpos - b2:xpos + b2]
                outputImg.setData(center)
                i += 1
                outputImg.write((i, outputStack))
                subpart = coord._subparticle
                subpart.setLocation(
                    (i, outputStack))  # Change path to new stack
                subpart.setObjId(None)  # Force to insert as a new item
                outputSet.append(subpart)

        if outliers:
            self.info(
                "WARNING: Discarded %s particles because laid out of the "
                "particle (for a box size of %d" % (outliers, boxSize))

        self._defineOutputs(outputParticles=outputSet)
        self._defineSourceRelation(self.inputParticles, outputSet)