コード例 #1
0
    return loss_tot, grad_tot.ravel()


if __name__ == "__main__":
    ## Build simulated noisy map
    # Noise map
    if cplx:
        n = np.random.normal(0.0, 1 / SNR, s.shape) + 1j*np.random.normal(0.0, 1 / SNR, s.shape)
    else:
        n = np.random.normal(0.0, 1 / SNR, s.shape)
    # Noisy map
    d = s + n
    
    print("Building operator...")
    start_time = time.time()
    wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, device=devices[0], cplx=cplx)
    print(f"Done! (in {time.time() - start_time}s)")
    
    print("Computing stats of target image...")
    start_time = time.time()
    coeffs = wph_op.apply(d, norm=norm).to("cpu")
    wph_op.to("cpu") # Move back to CPU before the actual denoising algorithm
    if torch.cuda.is_available():
        torch.cuda.empty_cache() # Empty the memory cache to clear devices[0] memory
    print(f"Done! (in {time.time() - start_time}s)")
    
    ## Minimization
    
    eval_cnt = 0

    total_start_time = time.time()
コード例 #2
0
target_hist_imag = softhist(data_torch.imag.flatten())

target_hist_real = target_hist_real.to(device)
target_hist_imag = target_hist_imag.to(device)

target_hist_real = target_hist_real / torch.sum(target_hist_real)
target_hist_imag = target_hist_imag / torch.sum(target_hist_imag)

print(target_hist_real, torch.sum(target_hist_real))
print(target_hist_imag, torch.sum(target_hist_imag))

cplx = np.iscomplexobj(data)

print("Building operator...", flush=True)
start_time = time.time()
wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, device=device)
print("Load model...", flush=True)
wph_op.load_model(p_list=p_list, dl=dl, dj=dj)
print(f"Done! (in {time.time() - start_time}s)", flush=True)

print("Computing stats of target image...", flush=True)
start_time = time.time()
if cplx:
    coeffs = wph_op.apply(np.stack(
        (data, data.real + 1j * 1e-9, data.imag + 1j * 1e-9), axis=0),
                          norm=norm,
                          padding=not pbc)
else:
    coeffs = wph_op.apply(data, norm=norm, padding=not pbc)
print(f"Done! (in {time.time() - start_time}s)")
コード例 #3
0
import pywph as pw
import torch

os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

M, N = 512, 512
J = 8
L = 8
dn = 0
cplx = True
norm = "auto"

data = torch.from_numpy(np.load('data/I_1.npy'))

start = time.time()
wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, cplx=cplx)
print(time.time() - start)

wph_op.to(0)
start = time.time()
data, nb_chunks = wph_op.preconfigure(data, requires_grad=True)
for i in range(nb_chunks):
    print(i, f"/{nb_chunks}")
    coeffs = wph_op.apply(data, i, norm=norm)
    loss = (torch.abs(coeffs)**2).mean()
    loss.backward(retain_graph=True)
    del coeffs, loss
print(time.time() - start)
wph_op.to("cpu")

os.chdir('../pywph/')
コード例 #4
0
import pywph as pw

from wph_quijote.wph_syntheses.wph_operator_wrapper import WPHOp_quijote
from wph_quijote_legacy_model import wph_quijote_legacy_model

M, N = 256, 256
J = 6
L = 8
dn = 2
norm = "auto"

data = np.load(
    'data/Q_1.npy')[::2, ::2] + 1j * np.load('data/U_1.npy')[::2, ::2]

for norm in [None, "auto"]:
    wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, device=0, cplx=True)
    wph_moments_indices, scaling_moments_indices = wph_quijote_legacy_model(
        J, L, dn=dn)
    wph_op.load_model([],
                      extra_wph_moments=wph_moments_indices,
                      extra_scaling_moments=scaling_moments_indices)
    wph_pywph = wph_op(data, norm=norm, ret_wph_obj=True)
    wph_op.to("cpu")

    stat_params = {
        "J": J,
        "L": L,
        "delta_j": J - 1,
        "delta_l": 4,
        "delta_n": dn,
        "scaling_function_moments": [0, 1, 2, 3],