コード例 #1
0
ファイル: test_parameters.py プロジェクト: Batch21/pywr
def test_parameter_df_upsampling(model):
    """ Test that the `DataFrameParameter` can upsample data from a `pandas.DataFrame` and return that correctly
    """
    # scenario indices (not used for this test)
    si = ScenarioIndex(0, np.array([0], dtype=np.int32))

    # Use a 7 day timestep for this test and run 2015
    model.timestepper.delta = datetime.timedelta(7)
    model.timestepper.start = pd.to_datetime('2015-01-01')
    model.timestepper.end = pd.to_datetime('2015-12-31')

    # Daily time-step
    index = pd.date_range('2015-01-01', periods=365, freq='D')
    series = pd.Series(np.arange(365), index=index)

    p = DataFrameParameter(model, series)
    p.setup()

    A = series.resample('7D').mean()
    for v, ts in zip(A, model.timestepper):
        np.testing.assert_allclose(p.value(ts, si), v)

    model.reset()
    # Daily time-step that requires aligning
    index = pd.date_range('2014-12-31', periods=366, freq='D')
    series = pd.Series(np.arange(366), index=index)

    p = DataFrameParameter(model, series)
    p.setup()

    # offset the resample appropriately for the test
    A = series[1:].resample('7D').mean()
    for v, ts in zip(A, model.timestepper):
        np.testing.assert_allclose(p.value(ts, si), v)

    model.reset()
    # Daily time-step that is not covering the require range
    index = pd.date_range('2015-02-01', periods=365, freq='D')
    series = pd.Series(np.arange(365), index=index)

    p = DataFrameParameter(model, series)
    with pytest.raises(ValueError):
        p.setup()

    model.reset()
    # Daily time-step that is not covering the require range
    index = pd.date_range('2014-11-01', periods=365, freq='D')
    series = pd.Series(np.arange(365), index=index)

    p = DataFrameParameter(model, series)
    with pytest.raises(ValueError):
        p.setup()
コード例 #2
0
ファイル: test_parameters.py プロジェクト: Batch21/pywr
def test_parameter_df_upsampling_multiple_columns(model):
    """ Test that the `DataFrameParameter` works with multiple columns that map to a `Scenario`
    """
    scA = Scenario(model, 'A', size=20)
    scB = Scenario(model, 'B', size=2)
    # scenario indices (not used for this test)

    # Use a 7 day timestep for this test and run 2015
    model.timestepper.delta = datetime.timedelta(7)
    model.timestepper.start = pd.to_datetime('2015-01-01')
    model.timestepper.end = pd.to_datetime('2015-12-31')

    # Daily time-step
    index = pd.date_range('2015-01-01', periods=365, freq='D')
    df = pd.DataFrame(np.random.rand(365, 20), index=index)

    p = DataFrameParameter(model, df, scenario=scA)
    p.setup()

    A = df.resample('7D', axis=0).mean()
    for v, ts in zip(A.values, model.timestepper):
        np.testing.assert_allclose([
            p.value(ts, ScenarioIndex(i, np.array([i], dtype=np.int32)))
            for i in range(20)
        ], v)

    p = DataFrameParameter(model, df, scenario=scB)
    with pytest.raises(ValueError):
        p.setup()