コード例 #1
0
ファイル: test_pnu_mr.py プロジェクト: zhuyeqing/pywsl
 def test_model_specification_error(self):
     n_l, prior_l = 30, .3
     n_u, prior_u = 200, .5
     n_t = 100
     x, y, x_tp, x_tn = gendata(n_l, prior_l, n_u, prior_u, n_t)
     eta_list = [
         pnu_mr.calc_etab(np.sum(y == +1), np.sum(y == -1), prior_u)
     ]
     with self.assertRaises(ValueError):
         pnu_mr.PNU_SL_FastCV(x, y, prior_u, eta_list, basis='DNN')
コード例 #2
0
ファイル: test_pnu_mr.py プロジェクト: zhuyeqing/pywsl
 def test_calc_etab(self):
     n_p, n_n = 10, 10
     prior_list = np.arange(.1, 1, .1)
     for prior in prior_list:
         eta = pnu_mr.calc_etab(n_p, n_n, prior)
         if prior < .5:
             self.assertTrue(eta > 0)
         elif prior > .5:
             self.assertTrue(eta < 0)
         else:
             self.assertTrue(eta == 0)
コード例 #3
0
ファイル: test_pnu_mr.py プロジェクト: nimeoz/pywsl
 def test_label_specification_error(self):
     n_l, prior_l = 30, .3
     n_u, prior_u = 200, .5
     n_t = 100
     x, y, x_tp, x_tn = gendata(n_l, prior_l, n_u, prior_u, n_t)
     y[0] = 2
     eta_list = [
         pnu_mr.calc_etab(np.sum(y == +1), np.sum(y == -1), prior_u)
     ]
     with self.assertRaises(ValueError):
         pnu_mr.PNU_SL(x, y, prior_u, eta_list, model='lm')
コード例 #4
0
ファイル: test_pnu_mr.py プロジェクト: zhuyeqing/pywsl
 def test_linear_model_one_eta(self):
     n_l, prior_l = 30, .5
     n_u, prior_u = 200, .3
     n_t = 100
     x, y, x_tp, x_tn = gendata(n_l, prior_l, n_u, prior_u, n_t)
     eta_list = [
         pnu_mr.calc_etab(np.sum(y == +1), np.sum(y == -1), prior_u)
     ]
     f_dec, outs, funcs = pnu_mr.PNU_SL_FastCV(x,
                                               y,
                                               prior_u,
                                               eta_list,
                                               basis='lm',
                                               nargout=3)
     err = 100 * calc_err(f_dec, x_tp, x_tn, prior_u)
コード例 #5
0
ファイル: test_pnu_mr.py プロジェクト: zhuyeqing/pywsl
 def test_model_nargout2(self):
     n_l, prior_l = 30, .5
     n_u, prior_u = 200, .3
     n_t = 100
     x, y, x_tp, x_tn = gendata(n_l, prior_l, n_u, prior_u, n_t)
     eta_list = [
         pnu_mr.calc_etab(np.sum(y == +1), np.sum(y == -1), prior_u)
     ]
     lambda_list = [.1]
     f_dec, outs = pnu_mr.PNU_SL_FastCV(x,
                                        y,
                                        prior_u,
                                        eta_list,
                                        lambda_list=lambda_list,
                                        basis='lm',
                                        nargout=2)
     err = 100 * calc_err(f_dec, x_tp, x_tn, prior_u)
コード例 #6
0
ファイル: test_pnu_mr.py プロジェクト: zhuyeqing/pywsl
 def test_gauss_model(self):
     n_l, prior_l = 30, .3
     n_u, prior_u = 200, .5
     n_t = 100
     lambda_list = [.1]
     x, y, x_tp, x_tn = gendata(n_l, prior_l, n_u, prior_u, n_t)
     eta_list = [
         pnu_mr.calc_etab(np.sum(y == +1), np.sum(y == -1), prior_u)
     ]
     f_dec, outs, funcs = pnu_mr.PNU_SL_FastCV(x,
                                               y,
                                               prior_u,
                                               eta_list,
                                               basis='gauss',
                                               lambda_list=lambda_list,
                                               nargout=3)
     err = 100 * calc_err(f_dec, x_tp, x_tn, prior_u)
コード例 #7
0
ファイル: test_pnu_mr.py プロジェクト: nimeoz/pywsl
 def test_model_without_cv(self):
     n_l, prior_l = 30, .3
     n_u, prior_u = 200, .5
     n_t = 100
     x, y, x_tp, x_tn = gendata(n_l, prior_l, n_u, prior_u, n_t)
     eta_list = [
         pnu_mr.calc_etab(np.sum(y == +1), np.sum(y == -1), prior_u)
     ]
     lambda_list = [.1]
     f_dec, outs, funcs = pnu_mr.PNU_SL(x,
                                        y,
                                        prior_u,
                                        eta_list,
                                        lambda_list=lambda_list,
                                        model='lm',
                                        nargout=3)
     err = 100 * calc_err(f_dec, x_tp, x_tn, prior_u)
コード例 #8
0
    n_l = 20
    n_u = 1000
    n_t = 1000

    prior_l = .5
    prior_u = .3

    eta_list = np.mgrid[-.9:.9:19j]

    x, y, x_t, y_t = gen_twonorm_ssl(n_l, prior_l, n_u, prior_u, n_t)
    x_l, y_l, x_u = x[y != 0, :], y[y != 0], x[y == 0, :]
    priorh = cpe(x_l, y_l, x_u)
    clf = PNU_SL(prior=priorh, basis='lm')
    params = {'eta': eta_list, 'lam': [.1]}
    etah = calc_etab(np.sum(y == +1), np.sum(y == -1), priorh)
    clf = GridSearchCV(estimator=clf,
                       param_grid=params,
                       scoring=make_scorer(pnu_risk, prior=priorh, eta=etah),
                       cv=3,
                       n_jobs=-1)
    timer.tic("Start PNU_SL")
    clf.fit(x, y)
    timer.toc()
    y_h = clf.predict(x_t)
    print(y_h)
    print(y_t)
    err1 = 100 * bin_clf_err(y_h, y_t, prior=prior_u)
    print("Error: {:.2f}\n".format(err1))

    timer.tic("Start PNU_SL_FastCV")