コード例 #1
0
    parameter_descriptions={
        'metric': 'The beta diversity metric to be computed.',
        'n_jobs': sklearn_n_jobs_description
    },
    output_descriptions={'distance_matrix': 'The resulting distance matrix.'},
    name='Beta diversity',
    description=("Computes a user-specified beta diversity metric for all "
                 "pairs of samples in a feature table."))

plugin.methods.register_function(
    function=q2_diversity.alpha_phylogenetic,
    inputs={
        'table': FeatureTable[Frequency],
        'phylogeny': Phylogeny[Rooted]
    },
    parameters={'metric': Str % Choices(alpha.phylogenetic_metrics())},
    outputs=[('alpha_diversity',
              SampleData[AlphaDiversity] % Properties('phylogenetic'))],
    input_descriptions={
        'table': ('The feature table containing the samples for which alpha '
                  'diversity should be computed.'),
        'phylogeny': ('Phylogenetic tree containing tip identifiers that '
                      'correspond to the feature identifiers in the table. '
                      'This tree can contain tip ids that are not present in '
                      'the table, but all feature ids in the table must be '
                      'present in this tree.')
    },
    parameter_descriptions={
        'metric': 'The alpha diversity metric to be computed.'
    },
    output_descriptions={
コード例 #2
0
ファイル: plugin_setup.py プロジェクト: jairideout/diversity
                  'diversity should be computed.')
    },
    parameter_descriptions={
        'metric': 'The beta diversity metric to be computed.'
    },
    output_descriptions={'distance_matrix': 'The resulting distance matrix.'},
    name='Beta diversity',
    description=("Computes a user-specified beta diversity metric for all "
                 "pairs of samples in a feature table.")
)

plugin.methods.register_function(
    function=q2_diversity.alpha_phylogenetic,
    inputs={'table': FeatureTable[Frequency] % Properties('uniform-sampling'),
            'phylogeny': Phylogeny[Rooted]},
    parameters={'metric': Str % Choices(alpha.phylogenetic_metrics())},
    outputs=[('alpha_diversity',
              SampleData[AlphaDiversity] % Properties('phylogenetic'))],
    input_descriptions={
        'table': ('The feature table containing the samples for which alpha '
                  'diversity should be computed.'),
        'phylogeny': ('Phylogenetic tree containing tip identifiers that '
                      'correspond to the feature identifiers in the table. '
                      'This tree can contain tip ids that are not present in '
                      'the table, but all feature ids in the table must be '
                      'present in this tree.')
    },
    parameter_descriptions={
        'metric': 'The alpha diversity metric to be computed.'
    },
    output_descriptions={