parameter_descriptions={ 'metric': 'The beta diversity metric to be computed.', 'n_jobs': sklearn_n_jobs_description }, output_descriptions={'distance_matrix': 'The resulting distance matrix.'}, name='Beta diversity', description=("Computes a user-specified beta diversity metric for all " "pairs of samples in a feature table.")) plugin.methods.register_function( function=q2_diversity.alpha_phylogenetic, inputs={ 'table': FeatureTable[Frequency], 'phylogeny': Phylogeny[Rooted] }, parameters={'metric': Str % Choices(alpha.phylogenetic_metrics())}, outputs=[('alpha_diversity', SampleData[AlphaDiversity] % Properties('phylogenetic'))], input_descriptions={ 'table': ('The feature table containing the samples for which alpha ' 'diversity should be computed.'), 'phylogeny': ('Phylogenetic tree containing tip identifiers that ' 'correspond to the feature identifiers in the table. ' 'This tree can contain tip ids that are not present in ' 'the table, but all feature ids in the table must be ' 'present in this tree.') }, parameter_descriptions={ 'metric': 'The alpha diversity metric to be computed.' }, output_descriptions={
'diversity should be computed.') }, parameter_descriptions={ 'metric': 'The beta diversity metric to be computed.' }, output_descriptions={'distance_matrix': 'The resulting distance matrix.'}, name='Beta diversity', description=("Computes a user-specified beta diversity metric for all " "pairs of samples in a feature table.") ) plugin.methods.register_function( function=q2_diversity.alpha_phylogenetic, inputs={'table': FeatureTable[Frequency] % Properties('uniform-sampling'), 'phylogeny': Phylogeny[Rooted]}, parameters={'metric': Str % Choices(alpha.phylogenetic_metrics())}, outputs=[('alpha_diversity', SampleData[AlphaDiversity] % Properties('phylogenetic'))], input_descriptions={ 'table': ('The feature table containing the samples for which alpha ' 'diversity should be computed.'), 'phylogeny': ('Phylogenetic tree containing tip identifiers that ' 'correspond to the feature identifiers in the table. ' 'This tree can contain tip ids that are not present in ' 'the table, but all feature ids in the table must be ' 'present in this tree.') }, parameter_descriptions={ 'metric': 'The alpha diversity metric to be computed.' }, output_descriptions={